Targeting toxins to treat whooping cough
Whooping cough is an infectious respiratory disease caused by the bacteria Bordetella pertussis. According to the U.S. Centers for Disease Control and Prevention, whooping cough cases are rising. While early antibiotic treatment can be effective, most diagnoses do not occur until after this therapeutic window has passed.

In a recent Journal of Biological Chemistry article , Stefanie Lietz from Ulm University, Germany, and an international team explored the human peptidome — the complete collection of peptides in the human body — for pertussis toxin, or PT, inhibitors using peptide libraries, fractionation and mass spectrometry. They identified the liver protein α1-antitrypsin, or α1AT, as a potent PT inhibitor. Additional cell culture and molecular modeling experiments indicated that α1AT likely binds to PT in solution and thus blocks the toxin from making contact with its known host glycoprotein cell surface interaction partner for endocytosis.
Patients with genetic α1AT deficiency receive synthetic α1AT in the clinic. Therefore, α1AT may be able to be repurposed to treat PT-mediated pertussis pathogenesis. Future studies will fill in details about α1AT’s mechanism of action against PT, such as verifying the α1AT residues involved in binding PT.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Computational tool helps scientists create novel bug sprays
Rapid discovery of mosquito repellent compounds is enabled through a novel screening platform that combines both computational modeling and functional screening.

Meet Lan Huang
Molecular & Cellular Proteomics associate editor uses crosslinking mass spec to study protein–protein interactions to find novel therapeutics.

Influenza gets help from gum disease bacteria
Scientists discover that a protease from Porphyromonas gingivalis enhances viral spread. Read more about this recent Journal of Biological Chemistry paper.

How bacteria fight back against promising antimicrobial peptide
Researchers find a mutation in E. coli that reduces its susceptibility to a potential novel antibiotic. Read more about this recent Journal of Biological Chemistry paper.

New clues reveal how cells respond to stress
Redox signaling protein may help regulate inflammasome and innate immune activation. Read more about this recent Journal of Biological Chemistry paper.

Innovative platform empowers scientists to transform venoms into therapeutics
Scientists combine phage display and a “metavenome” library to discover new drugs that bind clinically relevant human cell receptors. Read about this recent Molecular & Cellular Proteomics paper.