Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

3D printing technology in concrete construction

Abstract

Concrete construction strategies can be material-intensive and labour-intensive and often rely on formwork that produces material waste. 3D printing (3DP) technologies could reduce the materials and time needed in concrete construction and could enable designs to optimize thermal management, energy efficiency and structural monitoring relative to formwork-based construction strategies. In this Review, we discuss 3D concrete printing and its application in construction. Large gantry printers and robotic arms have been used in the construction of houses (~100 m2), buildings (exceeding 1,000 m2) and other infrastructures, including bridges with spans up to 30 m. Advances in design and printer control, such as using topological optimization, allow for material efficiency (saving up to 70% materials) and use of features for thermal management and incorporation of vegetation into buildings. Strategies to integrate sensors for structural monitoring and materials for energy storage and thermal management of 3DP are also being developed. For example, self-sensing 3DP concrete has been integrated for structural health monitoring, and there are efforts to incorporate phase change materials to enhance thermal management. However, concrete 3DP ink has a high proportion of cement (owing to the need to balance pumpability and extrudability with buildability during printing), which increases the embodied carbon associated with 3DP concrete construction. Low-carbon inks and use of waste-derived materials are, therefore, needed to reduce the life-cycle impact and embodied carbon of 3DP concrete structures.

Key points

  • 3D printing (3DP) concrete construction technologies enable materials efficiency and structural integrity in designs. Through the use of topological optimization, more than 50% of material savings relative to conventional construction methods have been reported.

  • Owing to extrudability, pumpability and buildability constraints, printable inks require more cement than conventional concrete (often > 40% of the volume).

  • Low-carbon inks and materials reuse are being developed to mitigate the environmental impact associated with increased cement usage.

  • 3DP can enable structural designs to be multifunctional and integrate thermal management, structural monitoring strategies and green walls or other vegetation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: 3D printing in concrete construction.
Fig. 2: Printability and rheology of printable inks.
Fig. 3: 3D-printed building features and potential functions.

Similar content being viewed by others

References

  1. World Green Building Council. Beyond the Business Case Report https://worldgbc.org/wp-content/uploads/2022/08/WorldGBC-Beyond-the-Business-Case.pdf (World Green Building Council, 2021).

  2. Habert, G. et al. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Environ. 1, 559–573 (2020).

    Article  Google Scholar 

  3. Hyun, C., Jin, C., Shen, Z. & Kim, H. Automated optimization of formwork design through spatial analysis in building information modeling. Autom. Constr. 95, 193–205 (2018).

    Article  Google Scholar 

  4. Raza, M. H., Besklubova, S. & Zhong, R. Y. Economic analysis of offsite and onsite 3D construction printing techniques for low-rise buildings: a comparative value stream assessment. Addit. Manuf. 89, 104292 (2024).

    Google Scholar 

  5. Li, W., Lin, X., Bao, D. & Xie, Y. A review of formwork systems for modern concrete construction. Structures 38, 52–63 (2022).

    Article  Google Scholar 

  6. Hao, J., Chen, Z., Zhang, Z. & Loehlein, G. Quantifying construction waste reduction through the application of prefabrication: a case study in Anhui, China. Environ. Sci. Pollut. Res. 28, 24499–24510 (2021).

    Article  Google Scholar 

  7. Churkina, G. et al. Buildings as a global carbon sink. Nat. Sustain. 3, 269–276 (2020).

    Article  Google Scholar 

  8. Hanifa, M., Agarwal, R., Sharma, U., Thapliyal, P. C. & Singh, L. P. A review on CO2 capture and sequestration in the construction industry: emerging approaches and commercialised technologies. J. CO2 Utilization 67, 102292 (2023).

  9. Petersen, K. H., Napp, N., Stuart-Smith, R., Rus, D. & Kovac, M. A review of collective robotic construction. Sci. Robot. 4, eaau8479 (2019). Reviews collective robotic construction and multirobot systems for large-scale, adaptable and scalable construction tasks.

    Article  Google Scholar 

  10. Lu, W. et al. Digital technologies for construction sustainability: status quo, challenges, and future prospects. npj Mater. Sustain. 2, 10 (2024).

    Article  Google Scholar 

  11. Zhang, K. et al. Aerial additive manufacturing with multiple autonomous robots. Nature 609, 709–717 (2022). Describes an autonomous aerial additive manufacturing system, enabling scalable, untethered 3D printing in remote and hard-to-access locations.

    Article  CAS  Google Scholar 

  12. Khan, M. S., Sanchez, F. & Zhou, H. 3-D printing of concrete: beyond horizons. Cem. Concr. Res. 133, 106070 (2020).

    Article  CAS  Google Scholar 

  13. Dong, E. et al. Printing large size eggshell-shaped elements with ultra-high-performance concrete: from material design to structural bearing capacity assessment. Constr. Build. Mater. 462, 139983 (2025).

    Article  Google Scholar 

  14. Wang, S., Liong, S., Gan, Y. & Sheng, Y. Cost-effective concrete fabrication for large irregularly shaped architectural structures. Autom. Constr. 156, 105119 (2023).

    Article  Google Scholar 

  15. Han, Y., Yang, Z., Ding, T. & Xiao, J. Environmental and economic assessment on 3D printed buildings with recycled concrete. J. Clean. Prod. 278, 123884 (2021).

    Article  Google Scholar 

  16. Wang, X. et al. Concrete 3D printing technology for sustainable construction: a review on raw material, concrete type and performance. Dev. Built Environ. 17, 100378 (2024).

    Article  Google Scholar 

  17. Bi, M., Tran, P., Xia, L., Ma, G. & Xie, Y. M. Topology optimization for 3D concrete printing with various manufacturing constraints. Addit. Manuf. 57, 102982 (2022). Develops a topology optimization framework for 3D printing concrete construction with enhanced self-support, continuous extrusion and material anisotropy.

    Google Scholar 

  18. Ichihara, N. & Ueda, M. 3D-printed high-toughness composite structures by anisotropic topology optimization. Compos. Pt B Eng. 253, 110572 (2023).

    Article  CAS  Google Scholar 

  19. De Schutter, G. et al. Vision of 3D printing with concrete — technical, economic and environmental potentials. Cem. Concr. Res. 112, 25–36 (2018).

    Article  Google Scholar 

  20. Gibson, I. et al. Additive Manufacturing Technologies Vol. 17 (Springer, 2021).

  21. Bhattacherjee, S. et al. Sustainable materials for 3D concrete printing. Cem. Concr. Compos. 122, 104156 (2021).

    Article  CAS  Google Scholar 

  22. Weng, Y., Li, M., Wong, T. N. & Tan, M. J. Synchronized concrete and bonding agent deposition system for interlayer bond strength enhancement in 3D concrete printing. Autom. Constr. 123, 103546 (2021).

    Article  Google Scholar 

  23. Zhang, X. et al. Large-scale 3D printing by a team of mobile robots. Autom. Constr. 95, 98–106 (2018).

    Article  Google Scholar 

  24. Zuo, Z. et al. Propelling the widespread adoption of large-scale 3D printing. Nat. Rev. Mater. 9, 754–756 (2023). Highlights advancements in large-scale 3D printing, emphasizing material, process and printer innovations necessary for construction automation of complex and multifunctional structures.

    Article  Google Scholar 

  25. Sovetova, M. & Kaiser Calautit, J. Thermal and energy efficiency in 3D-printed buildings: review of geometric design, materials and printing processes. Energy Build. 323, 114731 (2024).

    Article  Google Scholar 

  26. Davila Delgado, J. M. et al. Robotics and automated systems in construction: understanding industry-specific challenges for adoption. J. Build. Eng. 26, 100868 (2019).

    Article  Google Scholar 

  27. Khoshnevis, B. Automated construction by contour crafting — related robotics and information technologies. Autom. Constr. 13, 5–19 (2004).

    Article  Google Scholar 

  28. Keating, S. J., Leland, J. C., Cai, L. & Oxman, N. Toward site-specific and self-sufficient robotic fabrication on architectural scales. Sci. Robot. 2, eaam8986 (2017).

    Article  Google Scholar 

  29. Loveridge, R. & Coray, T. Robots on construction sites: the potential and challenges of on-site digital fabrication. Sci. Robot. 2, eaan3674 (2017).

    Article  Google Scholar 

  30. Khoshnevis, B., Bukkapatnam, S., Kwon, H. & Saito, J. Experimental investigation of contour crafting using ceramics materials. Rapid Prototyp. J. 7, 32–42 (2001).

    Article  Google Scholar 

  31. Burger, J. et al. Design and fabrication of optimised ribbed concrete floor slabs using large scale 3D printed formwork. Autom. Constr. 144, 104599 (2022).

    Article  Google Scholar 

  32. Xiao, J. et al. Large-scale 3D printing concrete technology: current status and future opportunities. Cem. Concr. Compos. 122, 104115 (2021).

    Article  CAS  Google Scholar 

  33. Chermprayong, P., Zhang, K., Xiao, F. & Kovac, M. An integrated delta manipulator for aerial repair: a new aerial robotic system. IEEE Robot. Autom. Mag. 26, 54–66 (2019).

    Article  Google Scholar 

  34. Werfel, J., Petersen, K. & Nagpal, R. Designing collective behavior in a termite-inspired robot construction team. Science 343, 754–758 (2014).

    Article  CAS  Google Scholar 

  35. Miriyev, A. & Kovač, M. Skills for physical artificial intelligence. Nat. Mach. Intell. 2, 658–660 (2020).

    Article  Google Scholar 

  36. Lin, T.-H., Chang, C.-T., Yang, B.-H., Hung, C.-C. & Wen, K.-W. AI-powered shotcrete robot for enhancing structural integrity using ultra-high performance concrete and visual recognition. Autom. Constr. 155, 105038 (2023).

    Article  Google Scholar 

  37. Qin, S. et al. AIstructure-Copilot: assistant for generative AI-driven intelligent design of building structures. Smart Constr. 1, 1–20 (2024).

    Google Scholar 

  38. Zheng, Y., Gao, Y., Lu, S. & Mosalam, K. M. Multistage semisupervised active learning framework for crack identification, segmentation, and measurement of bridges. Comput. Civ. Infrastruct. Eng. 37, 1089–1108 (2022).

    Article  Google Scholar 

  39. Fei, Y., Liao, W., Lu, X. & Guan, H. Knowledge‐enhanced graph neural networks for construction material quantity estimation of reinforced concrete buildings. Comput. Civ. Infrastruct. Eng. 39, 518–538 (2023).

    Article  Google Scholar 

  40. Lee, D., Lee, S. H., Masoud, N., Krishnan, M. S. & Li, V. C. Integrated digital twin and blockchain framework to support accountable information sharing in construction projects. Autom. Constr. 127, 103688 (2021).

    Article  Google Scholar 

  41. Anane, W., Iordanova, I. & Ouellet-Plamondon, C. BIM-driven computational design for robotic manufacturing in off-site construction: an integrated Design-to-Manufacturing (DtM) approach. Autom. Constr. 150, 104782 (2023).

    Article  Google Scholar 

  42. Zhang, W.-J. et al. Semi-supervised learning approach for construction object detection by integrating super-resolution and mean teacher network. J. Infrastruct. Intell. Resil. 3, 100095 (2024).

    Google Scholar 

  43. Wang, Z., Zhang, Y., Mosalam, K. M., Gao, Y. & Huang, S. L. Deep semantic segmentation for visual understanding on construction sites. Comput. Civ. Infrastruct. Eng. 37, 145–162 (2021).

    Article  CAS  Google Scholar 

  44. Johns, R. L. et al. A framework for robotic excavation and dry stone construction using on-site materials. Sci. Robot. 8, eabp9758 (2023).

    Article  Google Scholar 

  45. Roussel, N. Rheological requirements for printable concretes. Cem. Concr. Res. 112, 76–85 (2018).

    Article  CAS  Google Scholar 

  46. Zhang, Y. et al. A potential active rheology control approach for 3D printable cement-based materials: coupling of temperature and viscosity modifiers. Cem. Concr. Compos. 149, 105496 (2024).

    Article  CAS  Google Scholar 

  47. Gao, H. et al. Rheological behavior of 3D printed concrete: influential factors and printability prediction scheme. J. Build. Eng. 91, 109626 (2024).

    Article  Google Scholar 

  48. Roussel, N., Ovarlez, G., Garrault, S. & Brumaud, C. The origins of thixotropy of fresh cement pastes. Cem. Concr. Res. 42, 148–157 (2012).

    Article  CAS  Google Scholar 

  49. Liu, C. et al. Influence of HPMC and SF on buildability of 3D printing foam concrete: from water state and flocculation point of view. Composites Pt B Eng. 242, 110075 (2022).

    Article  CAS  Google Scholar 

  50. Chen, Y. et al. Systematical investigation of rheological performance regarding 3D printing process for alkali-activated materials: effect of precursor nature. Cem. Concr. Compos. 128, 104450 (2022).

    Article  CAS  Google Scholar 

  51. Tay, Y. W. D., Qian, Y. & Tan, M. J. Printability region for 3D concrete printing using slump and slump flow test. Compos. Pt B Eng. 174, 106968 (2019).

    Article  CAS  Google Scholar 

  52. Chen, Y. et al. Extending applicability of 3D-printable geopolymer to large-scale printing scenario via combination of sodium carbonate and nano-silica. Cem. Concr. Compos. 145, 105322 (2024).

    Article  CAS  Google Scholar 

  53. Cheng, H., Radlińska, A., Hillman, M., Liu, F. & Wang, J. Modeling concrete deposition via 3D printing using reproducing kernel particle method. Cem. Concr. Res. 181, 107526 (2024).

    Article  CAS  Google Scholar 

  54. Chen, Y. et al. A mechanical characteristic capture method considering printing configurations for buildability modeling in concrete 3D printing. Addit. Manuf. 94, 104462 (2024).

    Google Scholar 

  55. Asghari, Y., Mohammadyan-Yasouj, S. E., Petrů, M., Ghandvar, H. & R. Koloor, S. S. 3D printing and implementation of engineered cementitious composites — a review. Case Stud. Constr. Mater. 21, e03462 (2024).

    Google Scholar 

  56. Liu, Y., Lu, C., Hu, X. & Shi, C. Effect of silica fume on rheology of slag-fly ash-silica fume-based geopolymer pastes with different activators. Cem. Concr. Res. 174, 107336 (2023).

    Article  CAS  Google Scholar 

  57. Gupta, S., Tulliani, J.-M. & Kua, H. W. Carbonaceous admixtures in cementitious building materials: effect of particle size blending on rheology, packing, early age properties and processing energy demand. Sci. Total Environ. 807, 150884 (2022).

    Article  CAS  Google Scholar 

  58. Xu, Y. et al. Correlation of interlayer properties and rheological behaviors of 3DPC with various printing time intervals. Addit. Manuf. 47, 102327 (2021).

    CAS  Google Scholar 

  59. Pan, T., Guo, R., Jiang, Y. & Ji, X. How do the contact surface forces affect the interlayer bond strength of 3D printed mortar? Cem. Concr. Compos. 133, 104675 (2022).

    Article  CAS  Google Scholar 

  60. Wallevik, O. H. & Wallevik, J. E. Rheology as a tool in concrete science: the use of rheographs and workability boxes. Cem. Concr. Res. 41, 1279–1288 (2011).

    Article  CAS  Google Scholar 

  61. Liu, C. et al. Effect of sulphoaluminate cement on fresh and hardened properties of 3D printing foamed concrete. Compos. Pt B Eng. 232, 109619 (2022).

    Article  CAS  Google Scholar 

  62. Ibrahim, K. A., van Zijl, G. P. A. G. & Babafemi, A. J. Influence of limestone calcined clay cement on properties of 3D printed concrete for sustainable construction. J. Build. Eng. 69, 106186 (2023).

    Article  Google Scholar 

  63. Nodehi, M., Ozbakkaloglu, T. & Gholampour, A. Effect of supplementary cementitious materials on properties of 3D printed conventional and alkali-activated concrete: a review. Autom. Constr. 138, 104215 (2022).

    Article  Google Scholar 

  64. Chu, S. H., Yang, E. H. & Unluer, C. Development of nanofiber reinforced reactive magnesia-based composites for 3D printing. Constr. Build. Mater. 366, 130270 (2023).

    Article  CAS  Google Scholar 

  65. Perrot, A. et al. Snapshot on 3D printing with alternative binders and materials: Earth, geopolymers, gypsum and low carbon concrete. Cem. Concr. Res. 185, 107651 (2024). Reviews the alternative low-carbon printable inks for 3DP and analyses their potential to reduce carbon footprints and optimize structural performance in 3DP.

    Article  CAS  Google Scholar 

  66. Harbouz, I., Yahia, A., Roziere, E. & Loukili, A. Printing quality control of cement-based materials under flow and rest conditions. Cem. Concr. Compos. 138, 104965 (2023).

    Article  CAS  Google Scholar 

  67. Zhang, J. et al. Alterations in rheo-viscoelastic properties of cement composites with biochar incorporation as bio-based admixture. Constr. Build. Mater. 439, 137358 (2024).

    Article  CAS  Google Scholar 

  68. Ma, X., Tan, L., Lu, Y., Yao, W. & Wei, Y. Upcycling of waste plasterboard for the synthesis of high-quality gypsum-based 3D printing powder. Constr. Build. Mater. 373, 130846 (2023).

    Article  CAS  Google Scholar 

  69. Zhang, H., Xiao, J., Duan, Z., Zou, S. & Xia, B. Effects of printing paths and recycled fines on drying shrinkage of 3D printed mortar. Constr. Build. Mater. 342, 128007 (2022).

    Article  CAS  Google Scholar 

  70. Pasupathy, K., Ramakrishnan, S. & Sanjayan, J. 3D concrete printing of eco-friendly geopolymer containing brick waste. Cem. Concr. Compos. 138, 104943 (2023).

    Article  CAS  Google Scholar 

  71. Rodriguez Mendez, Q., Fuss, S., Lück, S. & Creutzig, F. Assessing global urban CO2 removal. Nat. Cities 1, 413–423 (2024).

    Article  Google Scholar 

  72. De Vlieger, J., Boehme, L., Blaakmeer, J. & Li, J. Buildability assessment of mortar with fine recycled aggregates for 3D printing. Constr. Build. Mater. 367, 130313 (2023).

    Article  Google Scholar 

  73. Liu, H. et al. 3D printing concrete with recycled coarse aggregates: the influence of pore structure on interlayer adhesion. Cem. Concr. Compos. 134, 104742 (2022).

    Article  CAS  Google Scholar 

  74. Saruhan, V., Keskinateş, M. & Felekoğlu, B. A comprehensive review on fresh state rheological properties of extrusion mortars designed for 3D printing applications. Constr. Build. Mater. 337, 127629 (2022).

    Article  Google Scholar 

  75. Weng, Y., Li, M., Zhang, D., Tan, M. J. & Qian, S. Investigation of interlayer adhesion of 3D printable cementitious material from the aspect of printing process. Cem. Concr. Res. 143, 106386 (2021).

    Article  CAS  Google Scholar 

  76. Yuan, P. F., Zhan, Q., Wu, H., Beh, H. S. & Zhang, L. Real-time toolpath planning and extrusion control (RTPEC) method for variable-width 3D concrete printing. J. Build. Eng. 46, 103716 (2022).

    Article  Google Scholar 

  77. Breseghello, L. & Naboni, R. Toolpath-based design for 3D concrete printing of carbon-efficient architectural structures. Addit. Manuf. 56, 102872 (2022).

    CAS  Google Scholar 

  78. Carneau, P., Mesnil, R., Baverel, O. & Roussel, N. Layer pressing in concrete extrusion-based 3D-printing: experiments and analysis. Cem. Concr. Res. 155, 106741 (2022).

    Article  CAS  Google Scholar 

  79. Lao, W., Li, M. & Tjahjowidodo, T. Variable-geometry nozzle for surface quality enhancement in 3D concrete printing. Addit. Manuf. 37, 101638 (2021).

    Google Scholar 

  80. Muthukrishnan, S., Ramakrishnan, S. & Sanjayan, J. Technologies for improving buildability in 3D concrete printing. Cem. Concr. Compos. 122, 104144 (2021).

    Article  CAS  Google Scholar 

  81. Liu, J. et al. Current and future trends in topology optimization for additive manufacturing. Struct. Multidiscip. Optim. 57, 2457–2483 (2018).

    Article  Google Scholar 

  82. Zhuang, Z. et al. A comprehensive review of sustainable materials and toolpath optimization in 3D concrete printing. npj Mater. Sustain. 2, 12 (2024).

    Article  Google Scholar 

  83. Wethyavivorn, B., Surit, S., Thanadirek, T. & Wethyavivorn, P. Topology optimization-based reinforced concrete beams: design and experiment. J. Struct. Eng. 148, 04022154 (2022).

    Article  Google Scholar 

  84. Pressmair, N. & Kromoser, B. A contribution to resource-efficient construction: design flow and experimental investigation of structurally optimised concrete girders. Eng. Struct. 281, 115757 (2023).

    Article  Google Scholar 

  85. Liu, Y., Jewett, J. L. & Carstensen, J. V. in Second RILEM International Conference on Concrete and Digital Fabrication (eds Bos, F. P., Lucas, S. S., Wolfs, R. J. M. & Salet, T. A. M.) Vol. 28, 601–611 (Springer International Publishing, 2020).

  86. Li, Y. et al. FloatArch: a cable-supported, unreinforced, and re-assemblable 3D-printed concrete structure designed using multi-material topology optimization. Addit. Manuf. 81, 104012 (2024).

    Google Scholar 

  87. Yang, W., Wang, L., Ma, G. & Feng, P. An integrated method of topological optimization and path design for 3D concrete printing. Eng. Struct. 291, 116435 (2023).

    Article  Google Scholar 

  88. Wu, J., Sigmund, O. & Groen, J. P. Topology optimization of multi-scale structures: a review. Struct. Multidiscip. Optim. 63, 1455–1480 (2021).

    Article  Google Scholar 

  89. Aage, N., Andreassen, E., Lazarov, B. S. & Sigmund, O. Giga-voxel computational morphogenesis for structural design. Nature 550, 84–86 (2017). Introduces a giga-voxel tool for high-resolution optimization of structural designs, with future potential for large-scale 3D printing integration.

    Article  CAS  Google Scholar 

  90. Dias, J. M., da Silva, F. S. C. P., Gasik, M., Miranda, M. G. M. & Bartolomeu, F. J. F. Unveiling additively manufactured cellular structures in hip implants: a comprehensive review. Int. J. Adv. Manuf. Technol. 130, 4073–4122 (2023).

    Article  Google Scholar 

  91. Peng, B. et al. Machine learning-enabled constrained multi-objective design of architected materials. Nat. Commun. 14, 6630 (2023). Provides a machine-learning-enabled framework for the constrained multi-objective design of 3D printed architected materials.

    Article  CAS  Google Scholar 

  92. Zhu, Z., Ng, D. W. H., Park, H. S. & McAlpine, M. C. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat. Rev. Mater. 6, 27–47 (2020).

    Article  Google Scholar 

  93. Goh, G. D., Sing, S. L. & Yeong, W. Y. A review on machine learning in 3D printing: applications, potential, and challenges. Artif. Intell. Rev. 54, 63–94 (2020).

    Article  Google Scholar 

  94. Qi, X., Chen, G., Li, Y., Cheng, X. & Li, C. Applying neural-network-based machine learning to additive manufacturing: current applications, challenges, and future perspectives. Engineering 5, 721–729 (2019).

    Article  Google Scholar 

  95. Gobert, C., Reutzel, E. W., Petrich, J., Nassar, A. R. & Phoha, S. Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Addit. Manuf. 21, 517–528 (2018).

    Google Scholar 

  96. Chang, Z., Zhang, H., Liang, M., Schlangen, E. & Šavija, B. Numerical simulation of elastic buckling in 3D concrete printing using the lattice model with geometric nonlinearity. Autom. Constr. 142, 104485 (2022).

    Article  Google Scholar 

  97. Park, D., Lee, J., Lee, H., Gu, G. X. & Ryu, S. Deep generative spatiotemporal learning for integrating fracture mechanics in composite materials: inverse design, discovery, and optimization. Mater. Horiz. 11, 3048–3065 (2024).

    Article  CAS  Google Scholar 

  98. Maruyama, I. & Lura, P. Properties of early-age concrete relevant to cracking in massive concrete. Cem. Concr. Res. 123, 105770 (2019).

    Article  CAS  Google Scholar 

  99. Vanek, J., Galicia, J. A. G. & Benes, B. Clever support: efficient support structure generation for digital fabrication. Computer Graph. Forum 33, 117–125 (2014).

    Article  Google Scholar 

  100. Jin, Z., Zhang, Z., Demir, K. & Gu, G. X. Machine learning for advanced additive manufacturing. Matter 3, 1541–1556 (2020).

    Article  Google Scholar 

  101. Lowke, D. et al. Material–process interactions in particle bed 3D printing and the underlying physics. Cem. Concr. Res. 156, 106748 (2022).

    Article  CAS  Google Scholar 

  102. Roussel, N., Spangenberg, J., Wallevik, J. & Wolfs, R. Numerical simulations of concrete processing: from standard formative casting to additive manufacturing. Cem. Concr. Res. 135, 106075 (2020).

    Article  CAS  Google Scholar 

  103. Mohammad, A. S. & Biernacki, J. J. 2D stationary computational printing of cement-based pastes. Cem. Concr. Res. 159, 106866 (2022).

    Article  CAS  Google Scholar 

  104. LaValle, S. M. Planning Algorithms (Cambridge Univ. Press, 2006).

  105. Buswell, R. A., Leal de Silva, W. R., Jones, S. Z. & Dirrenberger, J. 3D printing using concrete extrusion: a roadmap for research. Cem. Concr. Res. 112, 37–49 (2018).

    Article  CAS  Google Scholar 

  106. Gordon, W. J. & Hall, C. A. Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numerische Mathematik 21, 109–129 (1973).

    Article  Google Scholar 

  107. Zhao, H. et al. Connected fermat spirals for layered fabrication. ACM Trans. Graph. 35, 1–10 (2016).

    Google Scholar 

  108. Li, S., Nguyen-Xuan, H. & Tran, P. Digital design and parametric study of 3D concrete printing on non-planar surfaces. Autom. Constr. 145, 104624 (2023).

    Article  Google Scholar 

  109. Wong, N. H., Tan, C. L., Kolokotsa, D. D. & Takebayashi, H. Greenery as a mitigation and adaptation strategy to urban heat. Nat. Rev. Earth Environ. 2, 166–181 (2021).

    Article  Google Scholar 

  110. Zhong, H.-Y. et al. Single-sided natural ventilation in buildings: a critical literature review. Build. Environ. 212, 108797 (2022).

    Article  Google Scholar 

  111. Seuntjens, O., Belmans, B., Buyle, M. & Audenaert, A. A critical review on the adaptability of ventilation systems: current problems, solutions and opportunities. Build. Environ. 212, 108816 (2022).

    Article  Google Scholar 

  112. Dubor, A. et al. in Humanizing Digital Reality: Design Modelling Symposium Paris 2017 (eds De Rycke, K. et al.) 383–393 (Springer Singapore, 2018).

  113. Leschok, M. et al. 3D printing facades: design, fabrication, and assessment methods. Autom. Constr. 152, 104918 (2023).

    Article  Google Scholar 

  114. Feng, J. et al. Fire-safe aerogels and foams for thermal insulation: from materials to properties. Adv. Mater. 37, e2411856 (2024).

    Article  Google Scholar 

  115. Yi, H. & Kim, Y. Prototyping of 4D-printed self-shaping building skin in architecture: design, fabrication, and investigation of a two-way shape memory composite (TWSMC) façade panel. J. Build. Eng. 43, 103076 (2021).

    Article  Google Scholar 

  116. de Rubeis, T., Ciccozzi, A., Giusti, L. & Ambrosini, D. On the use of 3D printing to enhance the thermal performance of building envelope — a review. J. Build. Eng. 95, 110284 (2024).

    Article  Google Scholar 

  117. Li, Z., Xing, W., Sun, J., Feng, X. & Wang, H. Thermal network model for anisotropic heat transfer in 3D printed complex geometry structures. Build. Environ. 254, 111381 (2024).

    Article  Google Scholar 

  118. Bentz, D. P. Transient plane source measurements of the thermal properties of hydrating cement pastes. Mater. Struct. 40, 1073–1080 (2007).

    Article  CAS  Google Scholar 

  119. Sayyar, M., Weerasiri, R. R., Soroushian, P. & Lu, J. Experimental and numerical study of shape-stable phase-change nanocomposite toward energy-efficient building constructions. Energy Build. 75, 249–255 (2014).

    Article  Google Scholar 

  120. Cui, H., Memon, S. A. & Liu, R. Development, mechanical properties and numerical simulation of macro encapsulated thermal energy storage concrete. Energy Build. 96, 162–174 (2015).

    Article  Google Scholar 

  121. Memon, S. A., Cui, H., Zhang, H. & Xing, F. Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete. Appl. Energy 139, 43–55 (2015).

    Article  CAS  Google Scholar 

  122. Sarilak, D., Kerdlap, W., Embley, B., Chisti, Y. & Hansupalak, N. Model-based design, synthesis and use of thermally insulating mortar formulations for energy conservation in buildings. J. Clean. Prod. 276, 124287 (2020).

    Article  CAS  Google Scholar 

  123. Strzałkowski, J., Stolarska, A., Kożuch, D. & Dmitruk, J. Hygrothermal and strength properties of cement mortars containing cenospheres. Cem. Concr. Res. 174, 107325 (2023).

    Article  Google Scholar 

  124. Marani, A. & Nehdi, M. L. Integrating phase change materials in construction materials: critical review. Constr. Build. Mater. 217, 36–49 (2019).

    Article  CAS  Google Scholar 

  125. Dinesh, A., Indhumathi, S. & Pichumani, M. Self-sensing cement composites for structural health monitoring: from know-how to do-how. Autom. Constr. 160, 105304 (2024).

    Article  Google Scholar 

  126. Dinesh, A., Suji, D. & Pichumani, M. Self-sensing cementitious composite sensor with integrated steel fiber and carbonaceous powder for real-time application in large-scale infrastructures. Sens. Actuators A Phys. 353, 114209 (2023).

    Article  CAS  Google Scholar 

  127. Chanut, N. et al. Carbon-cement supercapacitors as a scalable bulk energy storage solution. Proc. Natl Acad. Sci. USA 120, e2304318120 (2023).

    Article  CAS  Google Scholar 

  128. Lyu, Q. et al. Energy storage properties and mechanical strengths of 3D printed porous concrete structural supercapacitors reinforced by electrodes made of carbon-black-coated Ni foam. Cem. Concr. Compos. 157, 105926 (2025).

    Article  CAS  Google Scholar 

  129. Dinesh, A., Saravanakumar, P., Rahul Prasad, B. & Kilbert Raj, S. Carbon black based self-sensing cement composite for structural health monitoring — a review on strength and conductive characteristics. Mater. Today Proc. https://doi.org/10.1016/j.matpr.2023.03.661 (2023).

  130. Jin, P. et al. Multifunctional cement-based composite with advanced self-sensing, electrothermal, and electrochemical properties. Adv. Funct. Mater. 35, 2411878 (2024).

    Article  Google Scholar 

  131. Ding, S. et al. Self-heating ultra-high performance concrete with stainless steel wires for active deicing and snow-melting of transportation infrastructures. Cem. Concr. Compos. 138, 105005 (2023).

    Article  CAS  Google Scholar 

  132. Nemova, D. et al. Experimental study on the thermal performance of 3D-printed enclosing structures. Energies 15, 4230 (2022).

    Article  CAS  Google Scholar 

  133. Amran, M., Fediuk, R., Murali, G., Vatin, N. & Al-Fakih, A. Sound-absorbing acoustic concretes: a review. Sustainability 13, 10712 (2021).

    Article  CAS  Google Scholar 

  134. Setaki, F. et al. 3D-printed sound absorbers: compact and customisable at broadband frequencies. Architect. Struct. Constr. 3, 205–215 (2023).

    Article  Google Scholar 

  135. Chen, Z., Chong, Y. B., Lim, K. M. & Lee, H. P. Reconfigurable 3D printed acoustic metamaterial chamber for sound insulation. Int. J. Mech. Sci. 266, 108978 (2024).

    Article  Google Scholar 

  136. Sheng, H., He, M.-X., Pueh Lee, H. & Ding, Q. Quasi-periodic sonic black hole with low-frequency acoustic and elastic bandgaps. Compos. Struct. 337, 118046 (2024).

    Article  Google Scholar 

  137. Lyu, Q., Wang, Y. & Dai, P. Multilayered plant-growing concrete manufactured by aggregate-bed 3D concrete printing. Constr. Build. Mater. 430, 136453 (2024).

    Article  CAS  Google Scholar 

  138. He, Y., Zhang, Y., Zhang, C. & Zhou, H. Energy-saving potential of 3D printed concrete building with integrated living wall. Energy Build. 222, 110110 (2020).

    Article  Google Scholar 

  139. Lyu, Q., Dai, P., Zong, M., Zhu, P. & Liu, J. Plant-germination ability and mechanical strength of 3D printed vegetation concrete bound with cement and soil. Constr. Build. Mater. 408, 133587 (2023).

    Article  CAS  Google Scholar 

  140. Chegut, A., Eichholtz, P. & Kok, N. The price of innovation: an analysis of the marginal cost of green buildings. J. Environ. Econ. Manag. 98, 102248 (2019).

    Article  Google Scholar 

  141. Adresi, M. & Pakhirehzan, F. Evaluating the performance of self-sensing concrete sensors under temperature and moisture variations — a review. Constr. Build. Mater. 404, 132923 (2023).

    Article  CAS  Google Scholar 

  142. Zhang, H., Hao, L., Zhang, S., Xiao, J. & Poon, C. S. Advanced measurement techniques for plastic shrinkage and cracking in 3D-printed concrete utilising distributed optical fiber sensor. Addit. Manuf. 74, 103722 (2023).

    Google Scholar 

  143. Banijamali, K. et al. Automated strength monitoring of 3D printed structures via embedded sensors. Autom. Constr. 166, 105681 (2024).

    Article  Google Scholar 

  144. Gu, H. & Wei, Y. Environmental monitoring and landscape design of green city based on remote sensing image and improved neural network. Environ. Technol. Innov. 23, 101718 (2021).

    Article  Google Scholar 

  145. Longo, A., Zappatore, M. & Bochicchio, M. A. Apollon: towards a citizen science methodology for urban environmental monitoring. Fut. Gener. Computer Syst. 112, 899–912 (2020).

    Article  Google Scholar 

  146. Bong, S. H., Xia, M., Nematollahi, B. & Shi, C. Ambient temperature cured ‘just-add-water’ geopolymer for 3D concrete printing applications. Cem. Concr. Compos. 121, 104060 (2021).

    Article  CAS  Google Scholar 

  147. Ghourchian, S., Butler, M., Krüger, M. & Mechtcherine, V. Modelling the development of capillary pressure in freshly 3D-printed concrete elements. Cem. Concr. Res. 145, 106457 (2021).

    Article  CAS  Google Scholar 

  148. Xia, K. et al. Understanding and modeling the plastic deformation of 3D printed concrete based on viscoelastic creep behavior. Addit. Manuf. 84, 104132 (2024).

    Google Scholar 

  149. Vlachakis, C., McAlorum, J. & Perry, M. 3D printed cement-based repairs and strain sensors. Autom. Constr. 137, 104202 (2022).

    Article  Google Scholar 

  150. Wang, L. & Aslani, F. Structural performance of reinforced concrete beams with 3D printed cement-based sensor embedded and self-sensing cementitious composites. Eng. Struct. 275, 115266 (2023).

    Article  Google Scholar 

  151. Huang, X., Liu, Y., Huang, L., Onstein, E. & Merschbrock, C. BIM and IoT data fusion: the data process model perspective. Autom. Constr. 149, 104792 (2023).

    Article  Google Scholar 

  152. Kumar, A. et al. Sensing technologies for monitoring intelligent buildings: a review. IEEE Sens. J. 18, 4847–4860 (2018).

    Article  Google Scholar 

  153. Jiang, Y., Yin, S., Li, K., Luo, H. & Kaynak, O. Industrial applications of digital twins. Philos. Trans. A Math. Phys. Eng. Sci. 379, 20200360 (2021).

    Google Scholar 

  154. Moelich, G. M., Kruger, J. & Combrinck, R. Plastic shrinkage cracking in 3D printed concrete. Compos. Pt B Eng. 200, 108313 (2020).

    Article  CAS  Google Scholar 

  155. Pan, Z. & Yu, Y. Learning multi-granular worker intentions from incomplete visual observations for worker–robot collaboration in construction. Autom. Constr. 158, 105184 (2024).

    Article  Google Scholar 

  156. Cha, Y.-J., Ali, R., Lewis, J. & Büyüköztürk, O. Deep learning-based structural health monitoring. Autom. Constr. 161, 105328 (2024).

    Article  Google Scholar 

  157. Abdelmageed, S., Abdelkhalek, S., Hussien, M. & Zayed, T. A hybrid simulation model for modules installation in modular integrated construction projects. Int. J. Constr. Manag. 24, 1407–1418 (2024).

    Google Scholar 

  158. An, D., Zhang, Y. X. & Yang, R. Numerical modelling of 3D concrete printing: material models, boundary conditions and failure identification. Eng. Struct. 299, 117104 (2024).

    Article  Google Scholar 

  159. Nguyen, P. D., Nguyen, T. Q., Tao, Q. B., Vogel, F. & Nguyen-Xuan, H. A data-driven machine learning approach for the 3D printing process optimisation. Virtual Phys. Prototyp. 17, 768–786 (2022).

    Article  Google Scholar 

  160. Dörfler, K. et al. Advancing construction in existing contexts: prospects and barriers of 3d printing with mobile robots for building maintenance and repair. Cem. Concr. Res. 186, 107656 (2024).

    Article  Google Scholar 

  161. Weng, Y. et al. Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. J. Clean. Prod. 261, 121245 (2020).

    Article  Google Scholar 

  162. Tinoco, M. P. et al. Life cycle assessment (LCA) and environmental sustainability of cementitious materials for 3D concrete printing: a systematic literature review. J. Build. Eng. 52, 104456 (2022).

    Article  Google Scholar 

  163. Bedarf, P., Dutto, A., Zanini, M. & Dillenburger, B. Foam 3D printing for construction: a review of applications, materials, and processes. Autom. Constr. 130, 103861 (2021).

    Article  Google Scholar 

  164. Hassan, H. et al. Towards innovative and sustainable buildings: a comprehensive review of 3D printing in construction. Autom. Constr. 163, 105417 (2024).

    Article  Google Scholar 

  165. Mansuri, D., Chakraborty, D., Elzarka, H., Deshpande, A. & Gronseth, T. Building information modeling enabled cascading formwork management tool. Autom. Constr. 83, 259–272 (2017).

    Article  Google Scholar 

  166. Batikha, M., Jotangia, R., Baaj, M. Y. & Mousleh, I. 3D concrete printing for sustainable and economical construction: a comparative study. Autom. Constr. 134, 104087 (2022).

    Article  Google Scholar 

  167. Van Roijen, E., Miller, S. A. & Davis, S. J. Building materials could store more than 16 billion tonnes of CO2 annually. Science 387, 176–182 (2025).

    Article  Google Scholar 

  168. Labianca, C. et al. A holistic framework of biochar-augmented cementitious products and general applications: technical, environmental, and economic evaluation. Environ. Res. 245, 118026 (2024).

    Article  CAS  Google Scholar 

  169. Huang, Y. et al. 3D printing of topologically optimized wing spar with continuous carbon fiber reinforced composites. Compos. Pt B Eng. 272, 111166 (2024).

    Article  CAS  Google Scholar 

  170. Rahemipoor, S. et al. Phase change materials incorporation into 3D printed geopolymer cement: a sustainable approach to enhance the comfort and energy efficiency of buildings. J. Clean. Prod. 417, 138005 (2023).

    Article  CAS  Google Scholar 

  171. Alhumayani, H., Gomaa, M., Soebarto, V. & Jabi, W. Environmental assessment of large-scale 3D printing in construction: a comparative study between cob and concrete. J. Clean. Prod. 270, 122463 (2020).

    Article  Google Scholar 

  172. Habibi, A., Buswell, R., Osmani, M. & Aziminezhad, M. Sustainability principles in 3D concrete printing: analysing trends, classifying strategies, and future directions. J. Build. Eng. 98, 111354 (2024).

    Article  Google Scholar 

  173. Zhang, C. et al. Design of 3D printable concrete based on the relationship between flowability of cement paste and optimum aggregate content. Cem. Concr. Compos. 104, 103406 (2019).

    Article  CAS  Google Scholar 

  174. Lowke, D. et al. Particle-bed 3D printing in concrete construction — possibilities and challenges. Cem. Concr. Res. 112, 50–65 (2018).

    Article  CAS  Google Scholar 

  175. Zhang, C. et al. Mix design concepts for 3D printable concrete: a review. Cem. Concr. Compos. 122, 104155 (2021). Reviews the mix design concepts for 3D printable inks and material properties required for pumpability, extrudability and buildability in 3D printed applications.

    Article  CAS  Google Scholar 

  176. Zhang, Y. et al. Comparison of printability and mechanical properties of rigid and flexible fiber-reinforced 3D printed cement-based materials. Constr. Build. Mater. 400, 132750 (2023).

    Article  CAS  Google Scholar 

  177. Zhang, D. et al. Discontinuous micro-fibers as intrinsic reinforcement for ductile engineered cementitious composites (ECC). Compos. Pt B Eng. 184, 107741 (2020).

    Article  CAS  Google Scholar 

  178. Dunant, C. F., Joseph, S., Prajapati, R. & Allwood, J. M. Electric recycling of Portland cement at scale. Nature 629, 1055–1061 (2024).

    Article  CAS  Google Scholar 

  179. Kopitha, K., Rajeev, P., Sanjayan, J. & Elakneswaran, Y. CO2 sequestration and low carbon strategies in 3D printed concrete. J. Build. Eng. 99, 111653 (2025).

    Article  Google Scholar 

  180. Zhong, K., Liu, Z. & Wang, F. Development of CO2 curable 3D printing materials. Addit. Manuf. 65, 103442 (2023).

    CAS  Google Scholar 

  181. Li, L. et al. Development of CO2-integrated 3D printing concrete. Constr. Build. Mater. 409, 134233 (2023).

    Article  CAS  Google Scholar 

  182. El-Sayegh, S., Romdhane, L. & Manjikian, S. A critical review of 3D printing in construction: benefits, challenges, and risks. Arch. Civ. Mech. Eng. 20, 34 (2020).

    Article  Google Scholar 

  183. Weger, D. et al. Building rethought — 3D concrete printing in building practice. Constr. Robot. 5, 203–210 (2021).

    Article  Google Scholar 

  184. Tabassum, T. & Ahmad Mir, A. A review of 3D printing technology — the future of sustainable construction. Mater. Today Proc. 93, 408–414 (2023).

    Article  Google Scholar 

  185. ISO/ASTM 52939:2023. Additive Manufacturing for Construction — Qualification Principles — Structural and Infrastructure Elements International Standard. American Society for Testing and Materials (ISO/ATSM) (2023).

  186. T/CECS 786-2020. Technical Specification of Concrete 3D Printing (China Association for Engineering Construction Standardization (CECS), 2020).

  187. T/CCPA 33 — 2022 (T/CBMF 183). Test Methods for Basic Mechanical Properties of 3D Printed Concrete (China Concrete & Cement-Based Products Association (CCPA), 2022).

  188. T/CCPA 34 — 2022 (T/CBMF 184). Test Methods for Printability of 3D Printing Fresh Concrete (China Concrete & Cement-Based Products Association (CCPA), 2022).

  189. USACE ECB 2021-13. Design and Construction of 3D Printed (Additive Construction) Concrete Structures (Engineering and Construction Bulletin (ECB), 2021).

  190. Besklubova, S., Skibniewski, M. J. & Zhang, X. Factors affecting 3D printing technology adaptation in construction. J. Constr. Eng. Manag. 147, 04021026 (2021).

    Article  Google Scholar 

  191. Robayo-Salazar, R., Mejía de Gutiérrez, R., Villaquirán-Caicedo, M. A. & Delvasto Arjona, S. 3D printing with cementitious materials: challenges and opportunities for the construction sector. Autom. Constr. 146, 104693 (2023).

    Article  Google Scholar 

  192. Chemweno, P., Pintelon, L. & Decre, W. Orienting safety assurance with outcomes of hazard analysis and risk assessment: a review of the ISO 15066 standard for collaborative robot systems. Saf. Sci. 129, 104832 (2020).

    Article  Google Scholar 

  193. Xu, M., Nie, X., Li, H., Cheng, J. C. P. & Mei, Z. Smart construction sites: a promising approach to improving on-site HSE management performance. J. Build. Eng. 49, 104007 (2022).

    Article  Google Scholar 

  194. Fang, W. et al. Knowledge graph for identifying hazards on construction sites: integrating computer vision with ontology. Autom. Constr. 119, 103310 (2020).

    Article  Google Scholar 

  195. Halder, S., Afsari, K., Chiou, E., Patrick, R. & Hamed, K. A. Construction inspection & monitoring with quadruped robots in future human–robot teaming: a preliminary study. J. Build. Eng. 65, 105814 (2023).

    Article  Google Scholar 

  196. Asprone, D. et al. Rethinking reinforcement for digital fabrication with concrete. Cem. Concr. Res. 112, 111–121 (2018).

    Article  CAS  Google Scholar 

  197. Mechtcherine, V. et al. A roadmap for quality control of hardening and hardened printed concrete. Cem. Concr. Res. 157, 106800 (2022).

    Article  CAS  Google Scholar 

  198. Wang, C., Chen, B., Vo, T. L. & Rezania, M. Mechanical anisotropy, rheology and carbon footprint of 3D printable concrete: a review. J. Build. Eng. 76, 107309 (2023).

    Article  Google Scholar 

  199. Rau, D. A., Williams, C. B. & Bortner, M. J. Rheology and printability: a survey of critical relationships for direct ink write materials design. Prog. Mater. Sci. 140, 101188 (2023).

    Article  Google Scholar 

  200. Feys, D., De Schutter, G., Fataei, S., Martys, N. S. & Mechtcherine, V. Pumping of concrete: understanding a common placement method with lots of challenges. Cem. Concr. Res. 154, 106720 (2022).

    Article  CAS  Google Scholar 

  201. Skempton, A. W. Portland cements, 1843–1887. Trans. Newcomen Soc. 35, 117–152 (1962).

    Article  Google Scholar 

  202. Brown, J. M. WB Wilkinson (1819–1902) and His Place in the History of Reinforced Concrete (Taylor & Francis, 1966).

  203. Lei, L., Hirata, T. & Plank, J. 40 years of PCE superplasticizers — history, current state-of-the-art and an outlook. Cem. Concr. Res. 157, 106826 (2022).

    Article  CAS  Google Scholar 

  204. Hull, C. W. The birth of 3D printing. Res. Technol. Manag. 58, 25–30 (2015).

    Google Scholar 

  205. Leach, N. Curating the digital: an interview with MoMA’s Paola Antonelli. Architect. Des. 87, 26–33 (2017).

    Google Scholar 

  206. Khoshnevis, B., Russell, R., Kwon, H. & Bukkapatnam, S. Crafting large prototypes. IEEE Robot. Autom. Mag. 8, 33–42 (2001).

    Article  Google Scholar 

  207. Lim, S. et al. Developments in construction-scale additive manufacturing processes. Autom. Constr. 21, 262–268 (2012).

    Article  Google Scholar 

  208. Xu, W. et al. Toward automated construction: the design-to-printing workflow for a robotic in-situ 3D printed house. Case Stud. Constr. Mater. 17, e01442 (2022).

    Google Scholar 

  209. Gaudillière, N. et al. in Robotic Fabrication in Architecture, Art and Design 2018: Foreword by Sigrid Brell-Çokcan and Johannes Braumann, Association for Robots in Architecture 459–472 (Springer, 2019).

  210. Ma, Y. & Che, Y. A brief introduction to 3D printing technology. in 17th International Congress of the GRCA (GRCA, 2015).

  211. Bos, F. P. et al. The realities of additively manufactured concrete structures in practice. Cem. Concr. Res. 156, 106746 (2022).

    Article  CAS  Google Scholar 

  212. Wilson, T. T., Mativenga, P. T. & Marnewick, A. L. Sustainability of 3D printing in infrastructure development. Procedia CIRP 120, 195–200 (2023).

    Article  Google Scholar 

  213. Jo, J. H., Jo, B. W., Cho, W. & Kim, J.-H. Development of a 3D printer for concrete structures: laboratory testing of cementitious materials. Int. J. Concr. Struct. Mater. 14, 1–11 (2020).

    Article  Google Scholar 

  214. du Plessis, A. et al. Biomimicry for 3D concrete printing: a review and perspective. Addit. Manuf. 38, 101823 (2021).

    Google Scholar 

  215. Liu, J., Li, S., Fox, K. & Tran, P. 3D concrete printing of bioinspired Bouligand structure: a study on impact resistance. Addit. Manuf. 50, 102544 (2022).

    Google Scholar 

  216. Wu, Z., Pan, H., Huang, P., Tang, J. & She, W. Biomimetic mechanical robust cement-resin composites with machine learning-assisted gradient hierarchical structures. Adv. Mater. 36, 2405183 (2024).

    Article  CAS  Google Scholar 

  217. Siddique, S. H., Hazell, P. J., Wang, H., Escobedo, J. P. & Ameri, A. A. H. Lessons from nature: 3D printed bio-inspired porous structures for impact energy absorption — a review. Addit. Manuf. 58, 103051 (2022).

    Google Scholar 

  218. Brown, K. A. & Gu, G. X. Computational challenges in additive manufacturing for metamaterials design. Nat. Comput. Sci. 4, 553–555 (2024).

    Article  CAS  Google Scholar 

  219. Du, G., Sun, Y. & Qian, Y. Flexural performance of nature-inspired 3D-printed strain-hardening cementitious composites (3DP-SHCC) with Bouligand structures. Cem. Concr. Compos. 149, 105494 (2024).

    Article  CAS  Google Scholar 

  220. Houshmand Khaneghahi, M. et al. Development of a nature-inspired polymeric fiber (BioFiber) for advanced delivery of self-healing agents into concrete. Constr. Build. Mater. 408, 133765 (2023).

    Article  CAS  Google Scholar 

  221. Zhang, T. et al. Development of a novel bio-inspired cement-based composite material to improve the fire resistance of engineering structures. Constr. Build. Mater. 225, 99–111 (2019).

    Article  CAS  Google Scholar 

  222. Li, Q. et al. A novel bio-inspired bone-mimic self-healing cement paste based on hydroxyapatite formation. Cem. Concr. Compos. 104, 103357 (2019).

    Article  CAS  Google Scholar 

  223. Ahamed, M. K., Wang, H. & Hazell, P. J. From biology to biomimicry: using nature to build better structures — a review. Constr. Build. Mater. 320, 126195 (2022).

    Article  Google Scholar 

  224. Zhang, F. et al. Unperceivable motion mimicking hygroscopic geometric reshaping of pine cones. Nat. Mater. 21, 1357–1365 (2022).

    Article  CAS  Google Scholar 

  225. Del Dottore, E., Mondini, A., Rowe, N. & Mazzolai, B. A growing soft robot with climbing plant-inspired adaptive behaviors for navigation in unstructured environments. Sci. Robot. 9, eadi5908 (2024).

    Article  Google Scholar 

  226. Bandyopadhyay, A., Traxel, K. D. & Bose, S. Nature-inspired materials and structures using 3D printing. Mater. Sci. Eng. R Rep. 145, 100609 (2021).

    Article  Google Scholar 

  227. Cohen, Z. & Carlson, N. Piling and pressing: towards a method of 3D printing reinforced concrete columns. Constr. Robot. 4, 61–73 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the Hong Kong Research Grants Council (RIF R6008-24 and HKUST 15231522) and HKUST ‘30 for 30’ Global Talent Acquisition Campaign.

Author information

Authors and Affiliations

Authors

Contributions

Yuying Zhang and X.Z. contributed equally to all aspects of the article. M.L. and C.Z. researched data for the article. Yamei Zhang, X.D., N.B., V.M., J.V.C., P.J.M.M. and D.C.W.T. contributed substantially to the discussion of the content and revisions of the article. Yuying Zhang, X.Z., M.L., C.Z. and D.C.W.T. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Daniel C. W. Tsang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clean Technology thanks M. Kan; H. Zhou, who co-reviewed with P. Zandifaez; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhu, X., Li, M. et al. 3D printing technology in concrete construction. Nat. Rev. Clean Technol. 1, 288–303 (2025). https://doi.org/10.1038/s44359-025-00047-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44359-025-00047-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing