Skip to main content

Advertisement

Log in

hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Genetic analysis revealed the hexanucleotide repeat expansion GGGGCC within the regulatory region of the gene C9orf72 as the most common cause of familial amyotrophic lateral sclerosis and the second most common cause of frontotemporal lobar degeneration. Since repeat expansions might cause RNA toxicity via sequestration of RNA-binding proteins, we searched for proteins capable of binding to GGGGCC repeats. In vitro-transcribed biotinylated RNA containing hexanucleotide GGGGCC or, as control, AAAACC repeats were incubated with nuclear protein extracts. Using stringent filtering protocols 20 RNA-binding proteins with a variety of different functions in RNA metabolism, translation and transport were identified. A subset of these proteins was further investigated by immunohistochemistry in human autopsy brains. This revealed that hnRNP A3 formed neuronal cytoplasmic and intranuclear inclusions in the hippocampus of patients with C9orf72 repeat extensions. Confocal microcopy showed that these inclusions belong to the group of the so far enigmatic p62-positive/TDP-43 negative inclusions characteristically seen in autopsy cases of diseased C9orf72 repeat expansion carriers. Thus, we have identified one protein component of these pathognomonic inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Al-Sarraj S, King A, Troakes C et al (2011) p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol 122(6):691–702

    Article  PubMed  CAS  Google Scholar 

  2. Arai T, Hasegawa M, Akiyama H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351(3):602–611

    Article  PubMed  CAS  Google Scholar 

  3. Baker M, Mackenzie IR, Pickering-Brown SM et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442(7105):916–919

    Article  PubMed  CAS  Google Scholar 

  4. Benajiba L, Le Ber I, Camuzat A et al (2009) TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Ann Neurol 65(4):470–473

    Article  PubMed  CAS  Google Scholar 

  5. Brettschneider J, Van Deerlin VM, Robinson JL et al (2012) Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion. Acta Neuropathol 123(6):825–839

    Article  PubMed  Google Scholar 

  6. Collins M, Riascos D, Kovalik T et al (2012) The RNA-binding motif 45 (RBM45) protein accumulates in inclusion bodies in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) patients. Acta Neuropathol 124(5):717–732

    Article  PubMed  CAS  Google Scholar 

  7. Cruts M, Gijselinck I, van der Zee J et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442(7105):920–924

    Article  PubMed  CAS  Google Scholar 

  8. DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72(2):245–256

    Article  PubMed  CAS  Google Scholar 

  9. Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11(5):1475–1489

    Article  PubMed  CAS  Google Scholar 

  10. Dormann D, Madl T, Valori CF et al (2012) Arginine methylation next to the PY-NLS modulates transportin binding and nuclear import of FUS. EMBO J 31(22):4258–4275

    Article  PubMed  CAS  Google Scholar 

  11. Elden AC, Kim HJ, Hart MP et al (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466(7310):1069–1075

    Article  PubMed  CAS  Google Scholar 

  12. Fratta P, Mizielinska S, Nicoll AJ et al (2012) C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes. Sci Rep 2:1016

    Article  PubMed  Google Scholar 

  13. Gasser T, Hardy J, Mizuno Y (2011) Milestones in PD genetics. Mov Disord 26(6):1042–1048

    Article  PubMed  Google Scholar 

  14. Gijselinck I, Van Langenhove T, van der Zee J et al (2012) A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 11(1):54–65

    Article  PubMed  CAS  Google Scholar 

  15. Gomez-Tortosa E, Gallego J, Guerrero-Lopez R et al (2013) C9ORF72 hexanucleotide expansions of 20–22 repeats are associated with frontotemporal deterioration. Neurology. doi:10.1212/WNL.0b013e31827f08ea

    PubMed  Google Scholar 

  16. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8(2):101–112

    Article  PubMed  CAS  Google Scholar 

  17. He Y, Smith R (2009) Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B. Cell Mol Life Sci 66(7):1239–1256

    Article  PubMed  CAS  Google Scholar 

  18. Hilleren PJ, Parker R (2003) Cytoplasmic degradation of splice-defective pre-mRNAs and intermediates. Mol Cell 12(6):1453–1465

    Article  PubMed  CAS  Google Scholar 

  19. Keller BA, Volkening K, Droppelmann CA et al (2012) Co-aggregation of RNA binding proteins in ALS spinal motor neurons: evidence of a common pathogenic mechanism. Acta Neuropathol 124(5):733–747

    Article  PubMed  CAS  Google Scholar 

  20. Kwiatkowski TJ Jr, Bosco DA, Leclerc AL et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323(5918):1205–1208

    Article  PubMed  CAS  Google Scholar 

  21. Ma AS, Moran-Jones K, Shan J et al (2002) Heterogeneous nuclear ribonucleoprotein A3, a novel RNA trafficking response element-binding protein. J Biol Chem 277(20):18010–18020

    Article  PubMed  CAS  Google Scholar 

  22. Mackenzie IR, Neumann M, Baborie A et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122(1):111–113

    Article  PubMed  Google Scholar 

  23. Maruyama H, Morino H, Ito H et al (2010) Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465(7295):223–226

    Article  PubMed  CAS  Google Scholar 

  24. Neumann M, Kwong LK, Lee EB et al (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 117(2):137–149

    Article  PubMed  CAS  Google Scholar 

  25. Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133

    Article  PubMed  CAS  Google Scholar 

  26. Papadopoulou C, Boukakis G, Ganou V et al (2012) Expression profile and interactions of hnRNP A3 within hnRNP/mRNP complexes in mammals. Arch Biochem Biophys 523(2):151–160

    Article  PubMed  CAS  Google Scholar 

  27. Rademakers R, Neumann M, Mackenzie IR (2012) Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol 8(8):423–434

    PubMed  CAS  Google Scholar 

  28. Ranum LP, Cooper TA (2006) RNA-mediated neuromuscular disorders. Annu Rev Neurosci 29:259–277

    Article  PubMed  CAS  Google Scholar 

  29. Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72(2):257–268

    Article  PubMed  CAS  Google Scholar 

  30. Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62

    Article  PubMed  CAS  Google Scholar 

  31. Schreiner B, Westerburg H, Forne I et al (2012) Role of the AAA protease Yme1 in folding of proteins in the intermembrane space of mitochondria. Mol Biol Cell doi. doi:10.1091/mbc.E12-05-0420

    Google Scholar 

  32. Shevchenko A, Chernushevich I, Wilm M, Mann M (2000) De Novo peptide sequencing by nanoelectrospray tandem mass spectrometry using triple quadrupole and quadrupole/time-of-flight instruments. Methods Mol Biol 146:1–16

    PubMed  CAS  Google Scholar 

  33. Sieben A, Van Langenhove T, Engelborghs S et al (2012) The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol 124(3):353–372

    Article  PubMed  CAS  Google Scholar 

  34. Simon-Sanchez J, Dopper EG, Cohn-Hokke PE et al (2012) The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. Brain 135(Pt 3):723–735

    Article  PubMed  Google Scholar 

  35. Skibinski G, Parkinson NJ, Brown JM et al (2005) Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet 37(8):806–808

    Article  PubMed  CAS  Google Scholar 

  36. Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319(5870):1668–1672

    Article  PubMed  CAS  Google Scholar 

  37. Thompson DM, Parker R (2007) Cytoplasmic decay of intergenic transcripts in Saccharomyces cerevisiae. Mol Cell Biol 27(1):92–101

    Article  PubMed  CAS  Google Scholar 

  38. Van Deerlin VM, Sleiman PM, Martinez-Lage M et al (2010) Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet 42(3):234–239

    Article  PubMed  Google Scholar 

  39. van der Zee J, Gijselinck I, Dillen L et al (2012) A pan-European study of the C9orf72 repeat associated with FTLD: geographic prevalence. Genomic Instability and intermediate repeats. Hum Mutat. doi:10.1002/humu.22244

    Google Scholar 

  40. Vance C, Rogelj B, Hortobagyi T et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323(5918):1208–1211

    Article  PubMed  CAS  Google Scholar 

  41. Watts GD, Wymer J, Kovach MJ et al (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36(4):377–381

    Article  PubMed  CAS  Google Scholar 

  42. Wilm M, Shevchenko A, Houthaeve T et al (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379(6564):466–469

    Article  PubMed  CAS  Google Scholar 

  43. Wu CH, Fallini C, Ticozzi N et al (2012) Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 488(7412):499–503

    Article  PubMed  CAS  Google Scholar 

  44. Zu T, Gibbens B, Doty NS et al (2011) Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci USA 108(1):260–265

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Iryna Pigur for expert technical assistance, Axel Imhof, Harald Steiner, Akio Fukumori, Richard Page, and Eva Bentmann for providing tools and technologies and Dorothee Dormann for critically reading the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (SFB-596), the Competence Network for Neurodegenerative Diseases (KNDD) of the Bundesministerium für Bildung und Forschung (BMBF) to C.H. and the Consortium of Centers of Excellence in Neurodegenerative Brain Diseases (CoEN) to C.H., M.C., D.E., and C.V.B. K.M. was supported by a postdoctoral fellowship from the Alexander von Humboldt Foundation. D.E. was supported by the Helmholtz Young Investigator Program HZ-NG-607. The Agency for Innovation by Science and Technology provides a PhD fellowship to J.J. The authors acknowledge the Antwerp biobank of the Institute Born-Bunge for the brain samples as well as the neurologists S. Engelborghs and P.P. De Deyn and neuropathologist J.J. Martin for the clinical and pathological diagnoses. The Antwerp site is supported for the genetic research of neurodegenerative brain diseases by the Belgian Science Policy Office Interuniversity Attraction Poles program, the Foundation for Alzheimer Research (SAO/FRA), the Medical Foundation Queen Elisabeth, the Flemish Government Methusalem excellence program, the research Foundation Flanders (FWO) and the Special Research Fund of the University of Antwerp, Belgium.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Haass.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, K., Lammich, S., Mackenzie, I.R.A. et al. hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol 125, 413–423 (2013). https://doi.org/10.1007/s00401-013-1088-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-013-1088-7

Keywords

Navigation