Skip to main content

Advertisement

Log in

Age-related differences in postural control: effects of the complexity of visual manipulation and sensorimotor contribution to postural performance

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Patterns of adaptive changes to the exposure to a sinusoidal visual stimulus can be influenced by stimulus characteristics as well as the integrity of the sensory and motor systems involved in the task. Sensorimotor deficits due to aging might alter postural responses to visual manipulation, especially in more demanding tasks. The purpose of this study was to compare postural control between young and older adults at different levels of complexity and to examine whether possible sensory and/or motor changes account for postural performance differences in older adults. Older and young adults were submitted to the following tests: postural control assessments, i.e., body sway during upright stance and induced by movement of a visual scene (moving room paradigm); sensory assessments, i.e., visual (acuity and contrast sensitivity) and somatosensory (tactile foot sensitivity and detection of passive ankle motion); and motor assessments, i.e., isometric ankle torque and muscular activity latency after stance perturbation. Older adults had worse sensory and motor performance, larger body sway amplitude during stance and stronger coupling between body sway and moving room motion than younger adults. Multiple linear regression analyses indicated that the threshold for the detection of passive ankle motion contributed the most to variances in body sway and this contribution was more striking when visual information was manipulated in a more unpredictable way. The present study suggests that less accurate information about body position is more detrimental to controlling body position, mainly for older adults in more demanding tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allison LK, Kiemel T, Jeka JJ (2006) Multisensory reweighting of vision and touch is intact in healthy and fall-prone older adults. Exp Brain Res 175:342–352

    Article  PubMed  Google Scholar 

  • Barela JA, Godoi D, Freitas Junior P, Polastri PF (2000) Visual information and body sway coupling in infants during sitting acquisition. Infant Behav Dev 23:285–297

    Article  Google Scholar 

  • Barela JA, Jeka JJ, Clark JE (2003) Postural control in children: coupling to dynamic somatosensory information. Exp Brain Res 150:434–442

    PubMed  Google Scholar 

  • Barela AM, Barela JA, Rinaldi NM, de Toledo DR (2009) Influence of imposed optic flow characteristics and intention on postural responses. Mot Control 13:119–129

    Google Scholar 

  • Bertenthal BI, Bai DL (1989) Infant’s sensitivity to optical flow for controlling posture. Dev Psychol 25:936–945

    Article  Google Scholar 

  • Bertenthal BI, Rose JL, Bai DL (1997) Perception-action coupling in the development of visual control of posture. J Exp Psychol Hum Percept Perform 23:1631–1643

    Article  CAS  PubMed  Google Scholar 

  • Bonfim TR, Jansen Paccola CA, Barela JA (2003) Proprioceptive and behavior impairments in individuals with anterior cruciate ligament reconstructed knees. Arch Phys Med Rehabil 84:1217–1223

    Article  PubMed  Google Scholar 

  • Brucki SMD, Nitrini R, Caramelli P, Bertolucci PHF, Okamoto IH (2003) Sugestões para o uso do mini-exame do estado mental no Brasil. Arq Neuropsiquiatr 61:777–781

    Article  PubMed  Google Scholar 

  • de Freitas PB, Knight CA, Barela JA (2010) Postural reactions following forward platform perturbation in young, middle-age, and old adults. J Electromyogr Kinesiol 20(4):693–700

    Google Scholar 

  • Di Fabio RP, Emasithi A (1997) Aging and the mechanisms underlying head and postural control during voluntary motion. Physical Ther 77:458–475

    Google Scholar 

  • Dijkstra TM, Schoner G, Giese MA, Gielen CC (1994) Frequency dependence of the action-perception cycle for postural control in a moving visual environment: relative phase dynamics. Biol Cybern 71:489–501

    Article  CAS  PubMed  Google Scholar 

  • Ferrell WR, Gandevia SC, McCloskey DI (1987) The role of joint receptors in human kinaesthesia when intramuscular receptors cannot contribute. J Physiol 386:63–71

    CAS  PubMed  Google Scholar 

  • Fitzpatrick R, McCloskey DI (1994) Proprioceptive, visual and vestibular thresholds for the perception of sway during standing in humans. J Physiol 478:173–186

    PubMed  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  • Freitas Junior PB, Barela JA (2004) Postural control as a function of self- and object-motion perception. Neurosci Lett 369:64–68. doi:10.1016/j.neulet.2004.07.075S0304-3940(04)00959-0

    Article  CAS  PubMed  Google Scholar 

  • Friden T, Roberts D, Zatterstrom R, Lindstrand A, Moritz U (1997) Proprioception after an acute knee ligament injury: a longitudinal study on 16 consecutive patients. J Orthop Res 15:637–644

    Article  CAS  PubMed  Google Scholar 

  • Gilsing MG, Van den Bosch CG, Lee SG, Ashton-Miller JA, Alexander NB, Schultz AB, Ericson WA (1995) Association of age with the threshold for detecting ankle inversion and eversion in upright stance. Age Ageing 24:58–66

    Article  CAS  PubMed  Google Scholar 

  • Godoi D, Barela JA (2008) Body sway and sensory motor coupling adaptation in children: effects of distance manipulation. Dev Psychobiol 50:77–87. doi:10.1002/dev.20272

    Article  PubMed  Google Scholar 

  • Hakkinen K, Pastinen UM, Karsikas R, Linnamo V (1995) Neuromuscular performance in voluntary bilateral and unilateral contraction and during electrical stimulation in men at different ages. Eur J Appl Physiol Occup Physiol 70:518–527

    Article  CAS  PubMed  Google Scholar 

  • Hay L, Bard C, Fleury M, Teasdale N (1996) Availability of visual and proprioceptive afferent messages and postural control in elderly adults. Exp Brain Res 108:129–139

    Article  CAS  PubMed  Google Scholar 

  • Horak FB, Diener HC, Nashner LM (1989a) Influence of central set on human postural responses. J Neurophysiol 62:841–853

    CAS  PubMed  Google Scholar 

  • Horak FB, Shupert CL, Mirka A (1989b) Components of postural dyscontrol in the elderly: a review. Neurobiol Aging 10:727–738

    Article  CAS  PubMed  Google Scholar 

  • Horak FB, Macpherson JM (1996) Postural orientation and equilibrium. In: Rowell L, Shepherd JT (eds) Handbook of physiology. Oxford University Press, New York, pp 255–292

  • Hurley MV, Rees J, Newham DJ (1998) Quadriceps function, proprioceptive acuity and functional performance in healthy young, middle-aged and elderly subjects. Age Ageing 27:55–62

    Article  CAS  PubMed  Google Scholar 

  • Jeka JJ, Allison LK, Kiemel T (2010) The dynamics of visual reweighting in healthy and fall-prone older adults. J Mot Behav 42:197–208. doi:10.1080/00222895.2010.481693

    Article  PubMed  Google Scholar 

  • Kjaer PK, Salomão SR, Belfort Júnior R, Colella ALD (2000) Validação clínica de teste psicofísico computadorizado para avaliação de visão de cores e sensibilidade ao contraste. Arquivos Brasileiros de Oftalmologia 63:185–189

    Article  Google Scholar 

  • Kuo AD (2005) An optimal state estimation model of sensory integration in human postural balance. J Neural Eng 2:S235–S249

    Article  PubMed  Google Scholar 

  • Lee DN, Aronson E (1974) Visual proprioceptive control of standing in human infants. Percept Psychophys 15:529–532

    Article  Google Scholar 

  • Lee DN, Lishman JR (1975) Visual proprioceptive control of stance. J Hum Mov Stud 1:87–95

    Google Scholar 

  • Lord SR, Menz HB (2000) Visual contributions to postural stability in older adults. Gerontology 46:306–310

    Article  CAS  PubMed  Google Scholar 

  • Lord SR, Ward JA (1994) Age-associated differences in sensori-motor function and balance in community dwelling women. Age Ageing 23:452–460

    Article  CAS  PubMed  Google Scholar 

  • Lord SR, Clark RD, Webster IW (1991) Visual acuity and contrast sensitivity in relation to falls in an elderly population. Age Ageing 20:175–181

    Article  CAS  PubMed  Google Scholar 

  • Mackey DC, Robinovitch SN (2006) Mechanisms underlying age-related differences in ability to recover balance with the ankle strategy. Gait Posture 23:59–68

    Article  PubMed  Google Scholar 

  • Maki BE, McIlroy WE (1996) Postural control in the older adult. Clin Geriatr Med 12:635–658

    CAS  PubMed  Google Scholar 

  • Menz HB, Morris ME, Lord SR (2006) Foot and ankle risk factors for falls in older people: a prospective study. J Gerontol A Biol Sci Med Sci 61:866–870

    Article  PubMed  Google Scholar 

  • Mergner T, Hlavacka F, Schweigart G (1993) Interaction of vestibular and proprioceptive inputs. J Vestib Res 3:41–57

    CAS  PubMed  Google Scholar 

  • Musolino MC, Loughlin PJ, Sparto PJ, Redfern MS (2006) Spectrally similar periodic and non-periodic optic flows evoke different postural sway responses. Gait Posture 23:180–188

    Article  PubMed  Google Scholar 

  • Nashner LM (1981) Analysis of stance posture in humans. In: Towe AL, Luschei ES (eds) Motor coordination (handbook of behavioral neurology, vol 5). Plenum Press, New York, NY, pp 527–565

  • Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88:1097–1118

    CAS  PubMed  Google Scholar 

  • Petrella RJ, Lattanzio PJ, Nelson MG (1997) Effect of age and activity on knee joint proprioception. Am J Phys Med Rehabil 76:235–241

    Article  CAS  PubMed  Google Scholar 

  • Polastri PF, Barela JA, Kiemel T, Jeka JJ (2012) Dynamics of inter-modality re-weighting during human postural control. Exp Brain Res 223:99–108. doi:10.1007/s00221-012-3244-z

    Article  PubMed  Google Scholar 

  • Prioli AC, Freitas Junior PB, Barela JA (2005) Physical activity and postural control in the elderly: coupling between visual information and body sway. Gerontology 51:145–148

    Article  PubMed  Google Scholar 

  • Prioli AC, Cardozo AS, de Freitas Junior PB, Barela JA (2006) Task demand effects on postural control in older adults. Hum Mov Sci 25:435–446

    Article  PubMed  Google Scholar 

  • Rauch SD, Velazquez-Villasenor L, Dimitri PS, Merchant SN (2001) Decreasing hair cell counts in aging humans. Ann N Y Acad Sci 942:220–227

    Article  CAS  PubMed  Google Scholar 

  • Refshauge KM, Fitzpatrick RC (1995) Perception of movement at the human ankle: effects of leg position. J Physiol 448:243–248

    Google Scholar 

  • Rinaldi NM, Polastri PF, Barela JA (2009) Age-related changes in postural control sensory reweighting. Neurosci Lett 467:225–229. doi:10.1016/j.neulet.2009.10.042

    Article  CAS  PubMed  Google Scholar 

  • Semmes J, Weinstein S, Ghent L, Teuber H (1960) Somatosensory changes after penetrating brain wounds in man. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Shumway-Cook A, Woollacott M (2000) Attentional demands and postural control: the effect of sensory context. J Gerontol A Biol Sci Med Sci 55:M10–M16

    Article  CAS  PubMed  Google Scholar 

  • Stoffregen TA (1985) Flow structure versus retinal location in the optical control of stance. J Exp Psychol Hum Percept Perform 11:554–565

    Article  CAS  PubMed  Google Scholar 

  • Sue S (2007) Test distance vision using a Snellen chart. Community Eye Health 20:52

    PubMed Central  PubMed  Google Scholar 

  • Teasdale N, Stelmach GE, Breunig A, Meeuwsen HJ (1991) Age differences in visual sensory integration. Exp Brain Res 85:691–696

    Article  CAS  PubMed  Google Scholar 

  • Thelen DG, Brockmiller C, Ashton-Miller JA, Schultz AB, Alexander NB (1998) Thresholds for sensing foot dorsi- and plantarflexion during upright stance: effects of age and velocity. J Gerontol A Biol Sci Med Sci 53:M33–M38

    Article  CAS  PubMed  Google Scholar 

  • Wade MG, Lindquist R, Taylor JR, Treat-Jacobson D (1995) Optical flow, spatial orientation, and the control of posture in the elderly. J Gerontol B Psychol Sci Soc Sci 50:P51–P58

    Article  CAS  PubMed  Google Scholar 

  • Woollacott MH, Shumway-Cook A, Nashner LM (1986) Aging and posture control: changes in sensory organization and muscular coordination. Int J Aging Hum Dev 23:97–114

    Article  CAS  PubMed  Google Scholar 

  • Young A, Skelton DA (1994) Applied physiology of strength and power in old age. Int J Sports Med 15:149–151

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from FAPESP/Brazil—Grant No. 06/54022-1.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Barela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toledo, D.R., Barela, J.A. Age-related differences in postural control: effects of the complexity of visual manipulation and sensorimotor contribution to postural performance. Exp Brain Res 232, 493–502 (2014). https://doi.org/10.1007/s00221-013-3756-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3756-1

Keywords

Navigation