Jump to main content

From Bitter to Sweet: How Sugar Content Changes in Ripening Fruit

1
2
3
4
5
349 reviews

Abstract

You have most likely witnessed the change that occurs as a banana ripens It changes from green and relatively hard to yellow and soft. The flavor also changes, from bitter to sweet. What happens during ripening? One big change is the increase in sugar content. In this food science fair project, you will measure how the sugar content of a banana changes as it ripens.

Summary

Areas of Science
Difficulty
 
Time Required
Average (6-10 days)
Prerequisites
You will need both ripe and unripe bananas for this science fair project, so be sure you can find them in your grocery store, particularly if it's the off-season.
Material Availability
You will need to purchase a refractometer online. See the Materials and Equipment list for details.
Cost
High ($100 - $150)
Safety
No issues
Credits

David B. Whyte, PhD, Science Buddies

Objective

Use a refractometer to measure sugar content in ripening fruit.

Introduction

Ripening is a process in fruits that causes them to become sweeter, softer, and less green. The process of ripening is controlled by the plant hormone called ethylene, which is a gas created by plants from the amino acid called methionine. A plant hormone is a chemical that regulates growth and other processes. Storing fruit in a closed container keeps the ethylene from drifting away and can increase the rate at which the fruit ripens. Ethylene increases the intracellular levels of certain enzymes in fruit. Enzymes are proteins that make certain chemical reactions occur faster than they normally would. The key enzymes involved in fruit ripening are amylase and pectinase. Amylase breaks down starch to produce simple sugars, so is responsible for the increasing sweetness of a ripening fruit. Pectinase breaks down pectin, a substance that keeps fruit hard, so is responsible for the increasing softness of ripening fruit. Other enzymes cause the color of the fruit to change by breaking down chlorophyll (which is green) and replacing it with pigments that are yellow, red, or other colors.

A photo of unripe bunches of green bananas next to a photo of ripened bunches of yellow bananas
Figure 1. Various stages in the ripening of bananas. The fruit becomes softer and sweeter as it ripens, due to the activity of enzymes, such as pectinase and amylase. (Wikipedia, 2009.)

Measuring the amount of sugar in ripening fruit is a critical step in deciding when to harvest certain kinds of fruit. The sugar content of grapes that are harvested to make wine, for example, is routinely checked during the grapes' development. The instrument used to measure the sugar content is called a refractometer. A refractometer takes advantage of the fact that the higher the amount of sugar dissolved in the juice of a grape, the more the juice will cause a beam of light to bend, or refract. Actually, any dissolved solid will increase the refractive index of a solution. Because the major dissolved solid in fruit juices is sugar, the refractometer reading is a measure of dissolved sugar.

A handheld refractometerImage Credit: Wikipedia / Wikipedia Commons
Figure 2. A traditional handheld refractometer. A refractometer is used to measure refractive index. For a solution of sugar, the refractive index can be used to determine the sugar content. (Wikipedia, 2009.)

There is also a special unit to measure the amount of sugar that is dissolved in a solution: degrees Brix. Degrees (°) Brix is a measurement of the dissolved sugar-to-water ratio of a liquid. It is measured with a refractometer. A 15°Brix solution has 15 grams (g) of sugar per 100 g of solution. Or, to put it another way, there are 15 g of sucrose sugar and 85 g of water in the 100 g of solution. Note that degrees Brix depends on the mass of sugar and water, and not on the volume of the solution.

Refractometers are easy to use. A few drops of the liquid are placed on the glass of the refractometer and the cover is closed. You then look through the eyepiece and read the degrees Brix on the scale that is visible inside. The amount of sugar in the solution is determined by where the color changes. Figure 3 shows the reading in a refractometer for a solution that has about 3.2°Brix. In this food science fair project, you will use a refractometer to measure how the sugar content changes in bananas as they ripen. Bananas are a good choice because ripening is accompanied by a clear change in color. This will allow you to select a variety of bananas at various stages of ripeness for testing.

The degrees Brix can be read from a scale inside the refractometerImage Credit: Wikipedia / Wikipedia Commons
Figure 3. The degrees Brix can be read from a scale inside the refractometer. Solutions with higher sugar cause more light refraction (bending), which is reflected on the scale. (Wikipedia, 2009.)

Terms and Concepts

Questions

Bibliography

Materials and Equipment

Disclaimer: Science Buddies participates in affiliate programs with Home Science Tools, Amazon.com, Carolina Biological, and Jameco Electronics. Proceeds from the affiliate programs help support Science Buddies, a 501(c)(3) public charity, and keep our resources free for everyone. Our top priority is student learning. If you have any comments (positive or negative) related to purchases you've made for science projects from recommendations on our site, please let us know. Write to us at scibuddy@sciencebuddies.org.

Experimental Procedure

  1. To begin, collect five unripe bananas. Choose five bananas that are similar in size and that are all unripe. The bananas should be as similar to each other as possible. The pieces of fruit should be unripe when you take your first reading at the start the procedure and very ripe for the last reading.
  2. Read the directions that came with your refractometer.
  3. On the day you purchase them, cut off a section of one of the unripe bananas that is about 3 inches in length.
  4. Place the banana section on the plate and mash it thoroughly with a fork.
  5. Cut a 6-inch square of cheesecloth.
  6. Place about one-third of the chopped banana in the cheesecloth and squeeze out a few drops of juice onto the lens of the refractometer.
  7. Squeeze slowly so that the juice has time to flow through the cloth. As an alternative, you can wipe the surface of the wet cloth on the glass of the refractometer.
  8. Read the sugar content of the unripe banana. Record the data in a data table in your lab notebook. Be sure to note the trial number, condition of the fruit, date, and sugar content (in Brix). Discard the fruit in the cheesecloth.
  9. Repeat steps 4–7 with the remaining freshly mashed banana two more times. Use new cheesecloth and banana for each reading. You should have three separate readings for each piece of fruit.
  10. Repeat steps 4–7 for the remaining pieces of fruit, as they ripen, as follows. Note: You might want to modify the days on which you take your Brix readings, depending on how quickly the fruit is ripening.
    1. Day 2: Test the second piece of fruit.
    2. Day 4: Test the third piece of fruit.
    3. Day 6: Test the fourth piece of fruit.
    4. Day 8: Test the last piece of fruit.
  11. Perform the entire procedure two more times. This demonstrates that your results are repeatable. The tests can be run concurrently.
  12. Average the degrees Brix for each day and record these numbers in your lab notebook.
  13. Graph the time, in days, on the x-axis and the degrees Brix on the y-axis.
icon scientific method

Ask an Expert

Do you have specific questions about your science project? Our team of volunteer scientists can help. Our Experts won't do the work for you, but they will make suggestions, offer guidance, and help you troubleshoot.

Global Connections

The United Nations Sustainable Development Goals (UNSDGs) are a blueprint to achieve a better and more sustainable future for all.

This project explores topics key to Responsible Consumption and Production: Ensure sustainable consumption and production patterns.

Variations

  • Store the bananas at different temperatures and compare the rate of ripening.
  • Compare the rate of ripening in bananas that are kept in a sealed container to bananas that are exposed to the air. To minimize differences between the two batches, put an equal number of fruit pieces into two identical containers, and then seal one of them. Make sure the temperature, moisture, etc. are the same for the two batches of fruit. You could also compare fruit stored in a closed paper bag to those stored in an open paper bag.
  • What happens to the rate at which the fruit ripens if you store it with other fruit, such as with a ripe apple or banana? Also, you could compare bruised bananas vs. un-bruised bananas (bruised fruit produces more ethylene gas).
  • Devise a way to determine how sugar content changes as a fruit of your choice ripens on a vine.

Careers

If you like this project, you might enjoy exploring these related careers:

Career Profile
Growing, aging, digesting—all of these are examples of chemical processes performed by living organisms. Biochemists study how these types of chemical actions happen in cells and tissues, and monitor what effects new substances, like food additives and medicines, have on living organisms. Read more
Career Profile
With a growing world population, making sure that there is enough food for everyone is critical. Plant scientists work to ensure that agricultural practices result in an abundance of nutritious food in a sustainable and environmentally friendly manner. Read more
Career Profile
There is a fraction of the world's population that doesn't have enough to eat or doesn't have access to food that is nutritionally rich. Food scientists or technologists work to find new sources of food that have the right nutrition levels and that are safe for human consumption. In fact, our nation's food supply depends on food scientists and technologists that test and develop foods that meet and exceed government food safety standards. If you are interested in combining biology, chemistry,… Read more
Career Profile
As the world's population grows larger, it is important to improve the quality and yield of food crops and animal food sources. Agricultural technicians work in the forefront of this very important research area by helping scientists conduct novel experiments. If you would like to combine technology with the desire to see things grow, then read further to learn more about this exciting career. Read more

News Feed on This Topic

 
, ,

Cite This Page

General citation information is provided here. Be sure to check the formatting, including capitalization, for the method you are using and update your citation, as needed.

MLA Style

Science Buddies Staff. "From Bitter to Sweet: How Sugar Content Changes in Ripening Fruit." Science Buddies, 23 June 2020, https://www.sciencebuddies.org/science-fair-projects/project-ideas/FoodSci_p063/cooking-food-science/how-sugar-content-changes-in-ripening-fruit?from=TW. Accessed 1 May 2024.

APA Style

Science Buddies Staff. (2020, June 23). From Bitter to Sweet: How Sugar Content Changes in Ripening Fruit. Retrieved from https://www.sciencebuddies.org/science-fair-projects/project-ideas/FoodSci_p063/cooking-food-science/how-sugar-content-changes-in-ripening-fruit?from=TW


Last edit date: 2020-06-23
Top
We use cookies and those of third party providers to deliver the best possible web experience and to compile statistics.
By continuing and using the site, including the landing page, you agree to our Privacy Policy and Terms of Use.
OK, got it
Free science fair projects.