Skip to main content

Animals Use Social Distancing to Avoid Disease

Lobsters, birds and some primates use quarantine to ward off infections

Animals social distancing illustration

Nick Kilner

On a shallow reef in the Florida Keys, a young Caribbean spiny lobster returns from a night of foraging for tasty mollusks and enters its narrow den. Lobsters usually share these rocky crevices, and tonight a new one has wandered in. Something about the newcomer is not right, though. Chemicals in its urine smell different. These substances are produced when a lobster is infected with a contagious virus called Panulirus argus virus 1, and the healthy returning lobster seems alarmed. As hard as it is to find a den like this one, protected from predators, the young animal backs out, into open waters and away from the deadly virus.

The lobster’s response to disease—seen in both field and laboratory experiments—is one we have become all too familiar with this year: social distancing. People’s close interactions with family and friends have been cut off to reduce the spread of COVID-19. It has been extremely hard. And many have questioned the necessity. Yet despite how unnatural it may feel to us, social distancing is very much a part of the natural world. In addition to lobsters, animals as diverse as monkeys, fishes, insects and birds detect and distance themselves from sick members of their species.

This kind of behavior is common because it helps social animals survive. Although living in groups makes it easier for animals to capture prey, stay warm and avoid predators, it also leads to outbreaks of contagious diseases. (Just ask any human parent with a child in day care.) This heightened risk has favored the evolution of behaviors that help animals avoid infection. Animals that social distance during an outbreak are the ones most likely to stay alive. That, in turn, increases their chances to produce offspring that also practice social distancing when confronted with disease. These actions are what disease ecologists such as ourselves term “behavioral immunity.” Wild animals do not have vaccines, but they can prevent disease by how they live and act.


On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.


Immunity through behavior does come with costs, though. Social distancing from other members of your species, even temporarily, means missing out on the numerous benefits that favored social living in the first place. For this reason, researchers have learned that complete shunning is just one approach animals take. Some social species stay together when members are infected but change certain grooming interactions, for example, whereas others, such as ants, limit encounters between individuals that play particular roles in the colony, all to lower the risk of infection.

Worth the Sacrifice

The ability of spiny lobsters to detect and avoid infected group mates has been key to their persistence in the face of Panulirus argus virus 1, which kills more than half of the juvenile lobsters it infects. Young lobsters are easy pickings for the virus because the animals are so social, at times denning in groups of up to 20. Safe homes in sponges, corals or rocky crevices along the ocean floor—and a mass of snapping claws—help the group of creatures defend against hungry predators such as triggerfish. Nevertheless, in the early 2000s researcher Don Behringer of the University of Florida and his colleagues noticed that some young lobsters were denning solo, even though it left them vulnerable. Most of these lonely lobsters, the researchers found, were infected with the contagious virus. These lobsters did not choose to den alone, the scientists suspected: they were being shunned. To confirm their hunch, the investigators placed several lobsters in aquarium tanks, allowing healthy crustaceans to choose an empty artificial den or one occupied by either a healthy or a diseased compatriot. In a 2006 article in Nature, the scientists reported that when disease was absent, healthy lobsters preferred being social and chose dens with a healthy lobster over empty ones. And lobsters strongly avoided the dens containing virus-infected lobsters, even though it meant they had to go it alone.

In a follow-up study published in 2013 in Marine Ecology Progress Series, Behringer and his colleague Joshua Anderson showed that healthy lobsters spot afflicted ones by using a sniff test. It turns out that infected lobsters have chemicals in their urine that serve as a danger signal to healthy group mates. When scientists used Krazy Glue to block the urine-releasing organs of infected lobsters, healthy animals no longer avoided the sick ones.

When lobsters detect an afflicted animal, they are willing to take considerable risks to stay disease-free. When Mark Butler of Old Dominion University and his colleagues tethered a sick lobster to the home den of healthy lobsters in the Florida Keys, they saw that healthy animals often abandoned safe havens for open waters, where they were at much higher risk of getting eaten. When Butler’s team repeated the experiment with a tethered healthy lobster, there was no mass exodus. In their research, published in 2015 in PLOS One, the scientists used mathematical models to show that avoidance, while not without costs, prevents viral outbreaks that would otherwise devastate lobster populations.

None

STRATEGIC DISTANCE: Garden ants (top) stay away from their colony when exposed to a fungus. House finches (bottom) avoid other birds that appear ill. Credit: Aditya Vistarakula Getty Images (top); Getty Images (bottom)

Protect the Valuable and Vulnerable

Lobsters are far from the only animals that have found the benefits of social distancing sometimes outweigh the costs. Some other creatures, in fact, have developed ways to boost the payoff by practicing social distancing strategically, in ways that protect the most valuable or vulnerable in their group. The most impressive examples occur in social insects, where different members of a colony have distinct roles that affect the colony’s survival.

In work led by Nathalie Stroeymeyt of the University of Bristol in England and published in 2018 in the journal Science, researchers used tiny digital tags to track the movements of common garden ant colonies during an outbreak of a lethal fungus, Metarhizium brunneum. The spores of this fungus are passed from ant to ant through physical contact; it takes one to two days for the spores to penetrate the ant’s body and cause sickness, which is often fatal. The delay between exposure and sickness allowed Stroeymeyt and her colleagues to see whether ants changed their social behaviors in the 24 hours after they first detected fungal spores in their colony but before fungus-exposed ants showed signs of sickness.

To measure how ants respond when disease first invades their colony, the researchers applied fungal spores directly to a subset of the forager ants that regularly leave the colony. The foragers are most likely to inadvertently encounter fungal spores while out searching for food, so this approach mimicked the natural way this fungus would be introduced. The behavioral responses of ants in 11 fungus-treated colonies were then compared with the same number of control colonies, where foragers were dabbed with a harmless sterile solution. Ants in fungus-exposed colonies started rapid and strategic social distancing after treatment. Within 24 hours those forager ants self-isolated by spending more time away from the colony compared with control-treated foragers.

Healthy ants in fungus-treated colonies also strongly reduced their social interactions, but the way they did so depended on their roles. Uninfected foragers, which interact frequently with other foragers that might carry disease, kept their distance from the colony when disease was present. This prevents them from inadvertently putting the reproductively valuable colony members (the queen and “nurses” that care for the brood) at risk. The nurses also took action, moving the brood farther inside the nest and away from the foragers once the fungus was detected in the colony. The cues that the ants use to detect and rapidly respond to fungus exposure are still unknown, but this strategic social distancing was so effective that all queens and most nurses from the study colonies were still alive at the end of the experimental outbreaks.

Garden ants protect the most valuable members of their colony, but some birds use a different strategy, perhaps guided by the strength of their own immune responses and resistance to infection. Maxine Zylberberg and her colleagues placed house finches in three adjacent cages. Each central bird was flanked on one side by a healthy finch and on the other side by a finch that appeared sick. (It got an injection that made it act lethargic.) By observing the amount of time that the central bird spent on each side of its cage, the researchers showed that finches generally avoid birds that appear sick, but the degree of avoidance varied with the power of their own immune systems. Birds with higher bloodstream levels of antibodies and of one other protein that may signal broader immune activation showed less aversion. But birds with weaker levels of immunity avoided sick birds most strongly, the investigators reported in Biology Letters in 2013.

A similar pattern was detected in guppies affected by a contagious and debilitating worm called Gyrodactylus turnbulli. In work published in 2019 in Biology Letters, Jessica Stephenson of the University of Pittsburgh placed individual guppies that did not yet have worm infections in a central aquarium flanked by two tanks. One was empty, and one contained a group of three guppies that represented potential contagion risk. Many guppies preferred the side of the tank near other guppies, as expected for a social species. But some male guppies strongly avoided the side of the tank near the other fish, and these distancing guppies were later shown to be highly susceptible to worm infections. It makes sense that evolution would favor a strong expression of distancing behavior in those most at risk.

None

RELATIVE RISK: Mandrills (left) groom close relatives even if they have parasites but avoid other contagious group mates. Banded mongooses (right), heavily dependent on group cooperation, groom both ill and healthy animals in their troop. Credit: Ralf Gelfand Getty Images (left); Mike Hill Getty Images (right)

The Ties That Bind

Strategic social distancing sometimes means maintaining certain social ties even when they raise disease risk. Mandrills, highly social primates with strikingly colorful faces, illustrate this approach. This species can be found in groups of tens to hundreds of individuals in the tropical rain forests of equatorial Africa. Groups typically have a mix of extended family members that frequently groom one another; grooming improves hygiene and cements social bonds. But they adjust their grooming behaviors in particular ways to avoid contagious group mates, Clémence Poirotte and his colleagues noted in a report published in 2017 in Science Advances. The scientists observed the daily grooming interactions of free-ranging mandrills in a park in Gabon and periodically collected fecal samples to learn which animals were heavily infected with intestinal parasites. Other mandrills actively avoided grooming those individuals. The mandrills could detect infection status based on smell alone: mandrills presented with two bamboo stalks rubbed in feces strongly avoided a stalk rubbed with droppings from another mandrill that had lots of parasites.

And yet mandrills sometimes forgo social distancing in the face of contagion. In a follow-up study, also led by Poirotte, mandrills continued to groom certain close relatives that had high levels of parasites, even while distancing from other parasitized group members. In their 2020 publication in Biology Letters, the researchers said that maintaining strong and unconditional alliances with certain relatives can have numerous long-term benefits in nonhuman primates, just as in humans. In mandrills, females with the strongest social ties start breeding earlier and may have more offspring over their lifetimes. Such evolutionary gains associated with maintaining some social ties may be worth the risk of potential infection.

The social ties of some group-living animals may be so critical that avoidance will never be favored, even when group mates are obviously sick. For example, work led by Bonnie M. Fairbanks and published in 2015 in Behavioral Ecology and Sociobiology showed that banded mongooses do not avoid group members, even when they exhibit clear signs of disease. Banded mongooses are a highly social species native to sub-Saharan Africa and live in stable groups of up to 40 family members and nonrelatives. Group members engage in close physical interactions by resting on top of one another and taking turns grooming each other in a quid pro quo manner.

Kathleen A. Alexander of Virginia Tech, another author on the paper, first noted that many mongooses in her study area in Botswana get visibly sick with a novel form of tuberculosis that takes months to kill them. Fairbanks then spent months closely tracking six troops affected by this disease, observing all social interactions between troop members. Surprisingly, healthy mongooses continued to engage in close interactions with visibly sick troop members. In fact, they groomed them to the same extent that they groomed their healthy troop mates, even though sick mongooses were far less likely to reciprocate. Distancing from sick group members may simply not be sustainable in species where close cooperation with other individuals for hunting and defense can make the difference between life and death.

Following Nature’s Lead

Like other animals, humans have a long evolutionary history with infectious diseases. Many of our own forms of behavioral immunity, such as feelings of disgust in dirty or crowded environments, are likely the results of this history. But modern humans, unlike other animals, have many advantages when plagues come to our doors. For instance, we can now communicate disease threats globally in an instant. This ability allows us to institute social distancing before disease appears in our local community—a tactic that has saved many lives. We have advanced digital communication platforms, from e-mail to group video chats, that allow us to keep our physical distance while maintaining some social connections. Other animals lose social ties with actual distance. But perhaps the biggest human advantage is the ability to develop sophisticated nonbehavioral tools, such as vaccines, that prevent disease without the need for costly behavioral changes. Vaccination allows us to maintain rich, interactive social lives despite contagious diseases such as polio and measles that would otherwise ravage us.

When it comes to stopping novel diseases like COVID-19, however, we are in much the same boat as other animals. Here, as in nature, tried-and-true behaviors such as social distancing are our best tools until vaccines or treatments can be developed. But just like other animals, we have to be strategic about it. Like mandrills and ants, we can maintain the most essential social interactions and distance farthest from those who are most vulnerable and who we could infect by accident. The success of spiny lobsters against a devastating virus in the Caribbean shows that short-term costs of social distancing, while severe, have long-term payoffs for survival. As unnatural as it may feel, we need only follow nature’s lead.

MORE TO EXPLORE

Infection-Avoidance Behaviour in Humans and Other Animals. Valerie A. Curtis in Trends in Immunology, Vol. 35, No. 10, pages 457–464; October 2014.

No Evidence for Avoidance of Visibly Diseased Conspecifics in the Highly Social Banded Mongoose (Mungos mungo). Bonnie M. Fairbanks, Dana M. Hawley and Kathleen A. Alexander in Behavioral Ecology and Sociobiology, Vol. 69, No. 3, pages 371–381; March 2015.

Ecological and Evolutionary Consequences of Parasite Avoidance. J. C. Buck, S. B. Weinstein and H. S. Young in Trends in Ecology and Evolution, Vol. 33, No. 8, pages 619–632; August 2018.

FROM OUR ARCHIVES

The Social Lives of the Amboseli Baboons. Lydia Denworth; January 2019.

Dana M. Hawley is a professor at Virginia Tech who studies social behavior and disease among animals.

More by Dana M. Hawley

Julia C. Buck is an assistant professor at the University of North Carolina at Wilmington, where she runs a disease ecology laboratory.

More by Julia C. Buck
Scientific American Magazine Vol 323 Issue 2This article was originally published with the title “Animals Apart” in Scientific American Magazine Vol. 323 No. 2 (), p. 36
doi:10.1038/scientificamerican0820-36