

Relationship between Volatile Organic Compounds (VOCs) in exhaled breath determined by Proton Transfer Reaction Time of Flight Mass Spectrometry (PTR-TOF-MS), clinical characteristics and airway inflammation in COPD

<u>L. Carr¹</u>, L. Bryant², A. Yousuf¹, R. Cordell², M. Wilde², S. Siddiqui¹, P. Monks², C. Brightling¹ Departments of ¹Infection, Immunity and Inflammation, and ²Chemistry, University of Leicester, UK

Background

- Chronic obstructive pulmonary disease (COPD) is a heterogeneous condition.
- Breathomics presents an opportunity to phenotype this heterogeneity.
- How breath volatile organic compounds (VOCs) relate to clinical features of disease, airway physiology and inflammation is uncertain.

Methods

- Single centre prospective study; moderate to severe COPD.
- 39 COPD subjects, 379 breath samples collected using Reciva (figure 1).
- Proton Transfer Reaction-Time Flight Mass Spectrometry used (PTR-MS).
- Breathomic data analysed using PLS-DA model and receiver operator characteristic (ROC) curves generated.
- Profiles associated with spirometry, lung volumes, gas transfer, symptoms (mMRC and CAT questionnaires), sputum eosinophils (< versus ≥1%) and neutrophils (< versus ≥61%).

Results

- Clinical characteristics were as shown Table 1.
- No distinct VOC breath profiles associated with airway physiology or symptoms.
- Sputum eosinophil and neutrophil cut-offs did identify distinct profiles with a ROC area-under-the-curve (95% confidence intervals) 0.84 (0.77-0.86) and 0.80 (0.69-0.81) respectively. Figure 2 PLS-DA plot and figure 3 ROC curve for sputum eosinophils.

Table 1: Clinical characteristics		
Age years (range)		70 (66-74)
Female, n (%)		8 (23)
Caucasian, n (%)		39 (100)
Current smoker, n (%)		3 (8.8)
Pack years (SD)		48 (3.6)
BMI, kg/m2 (SD)		27.74 (6.32)
FEV1 % predicted (SE)		55.00 (2.25)
Gold Stage	I, n (%)	4 (10)
	II, n (%)	13 (32.5)
	III, n (%)	14 (35)
	IV, n (%)	8 (7.5)
MRC score (SE)		2.6 (0.06)
SGRQ score (SE)		45.60 (1.21)
CAT score (SE)		19 (0.49)
Sputum eosinophils % (SE)		5.13 (0.73)
Sputum neutrophils % (SE)		73.39 (1.66)

Conclusion

VOC breath profiles are related to airway inflammation but not physiology or symptoms in COPD.

Figure 2: ROC curve derived from breathome to discriminate between sputum neutrophils high vs low (AUROC = 0.7985)

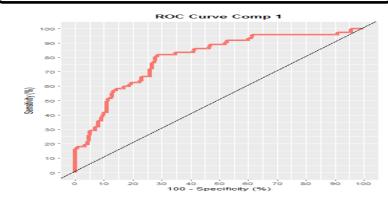
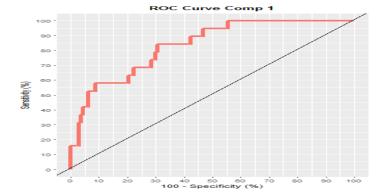



Figure 3: ROC curve derived from breathome to discriminate between sputum eosinophil high versus low

