Three Self-Healing Materials That Could Change the Future of Construction

Buildings, regrettably, don't last forever. Until recently, the only way to increase a building's lifespan was ongoing maintenance, which can be expensive, time-consuming and in the case of infrastructure such as bridges or roads, inconvenient. Beyond that, periodic replacement of the entire structure was an option, however this is clearly not a sustainable solution, especially considering the amount of CO2-releasing concrete used in modern construction.

But in the 21st century, another alternative is emerging. This article on CityLab uncovers three self-healing materials that could significantly extend the lifespan of a construction, including Erik Schlangen's asphalt that re-sets itself with a dose of induction heating, concrete developed at TU Delft (and elsewhere) that patches up cracks with the help of its living bacterial aggregate, and a recent discovery by MIT scientists that some metals have self-healing properties.

Read the article in full here, or carry on after the break for our own coverage of Erik Schlangen and TU Delft's work in self-healing materials.

Erik Schlangen Demonstrates the Potential of "Self-Healing Asphalt"

Six "Miracle" Materials That Will Change Their Industries

About this author
Cite: Rory Stott. "Three Self-Healing Materials That Could Change the Future of Construction" 01 Oct 2014. ArchDaily. Accessed . <https://www.archdaily.com/552763/three-self-healing-materials-that-could-change-the-future-of-construction> ISSN 0719-8884

You've started following your first account!

Did you know?

You'll now receive updates based on what you follow! Personalize your stream and start following your favorite authors, offices and users.