Skip to main content

Advertisement

Log in

Automated Retinal Image Analysis for Diabetic Retinopathy in Telemedicine

  • Microvascular Complications—Retinopathy (JK Sun, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

There will be an estimated 552 million persons with diabetes globally by the year 2030. Over half of these individuals will develop diabetic retinopathy, representing a nearly insurmountable burden for providing diabetes eye care. Telemedicine programmes have the capability to distribute quality eye care to virtually any location and address the lack of access to ophthalmic services. In most programmes, there is currently a heavy reliance on specially trained retinal image graders, a resource in short supply worldwide. These factors necessitate an image grading automation process to increase the speed of retinal image evaluation while maintaining accuracy and cost effectiveness. Several automatic retinal image analysis systems designed for use in telemedicine have recently become commercially available. Such systems have the potential to substantially improve the manner by which diabetes eye care is delivered by providing automated real-time evaluation to expedite diagnosis and referral if required. Furthermore, integration with electronic medical records may allow a more accurate prognostication for individual patients and may provide predictive modelling of medical risk factors based on broad population data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ARIA:

Automated retinal image analysis

JVN:

Joslin Vision Network

CADe:

Computer-aided detection

CADx:

Computer-aided diagnosis

ETDRS:

Early treatment diabetic retinopathy study

ARIS:

Automated Retinal Imaging System

PCA:

Principal component analysis

DRS:

Diabetic retinopathy study

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jaeger E. Beitr zur Pathol des Auges. Wien p. 1856;33 Fig 12.

  2. Kempen JH, O'Colmain BJ, Leske MC, Haffner SM, Klein R, Moss SE, et al. The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol. 2004;122:552–63.

    Article  PubMed  Google Scholar 

  3. Roy MS, Klein R, O'Colmain BJ, Klein BE, Moss SE, Kempen JH. The prevalence of diabetic retinopathy among adult type 1 diabetic persons in the United States. Arch Ophthalmol. 2004;122:546–51.

    Article  PubMed  Google Scholar 

  4. Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. The Wisconsin epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol. 1984;102:527–32.

    Article  CAS  PubMed  Google Scholar 

  5. Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol. 1984;102:520–6.

    Article  CAS  PubMed  Google Scholar 

  6. Banting FG, Best CH, Collip JB, Campbell WR, Fletcher AA. Pancreatic extracts in the treatment of diabetes mellitus. Can Med Assoc J. 1922;12:141–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Diabetic Retinopathy Clinical Research N, Writing C, Aiello LP, Beck RW, Bressler NM, Browning DJ, et al. Rationale for the diabetic retinopathy clinical research network treatment protocol for center-involved diabetic macular edema. Ophthalmology. 2011;118:e5–14.

    Article  Google Scholar 

  8. Brown DM, Nguyen QD, Marcus DM, Boyer DS, Patel S, Feiner L, et al. Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase III trials: RISE and RIDE. Ophthalmology. 2013;120:2013–22.

    Article  PubMed  Google Scholar 

  9. Korobelnik JF, Do DV, Schmidt-Erfurth U, Boyer DS, Holz FG, Heier JS, Midena E, Kaiser PK, Terasaki H, Marcus DM, et al. Intravitreal aflibercept for diabetic macular edema. Ophthalmology 2014;121:2247–54.

  10. Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1991;98:766–785.

  11. Hartnett ME, Key IJ, Loyacano NM, Horswell RL, Desalvo KB. Perceived barriers to diabetic eye care: qualitative study of patients and physicians. Arch Ophthalmol. 2005;123:387–91.

    Article  PubMed  Google Scholar 

  12. Liew G, Michaelides M, Bunce C. A comparison of the causes of blindness certifications in England and Wales in working age adults (16–64 years), 1999–2000 with 2009–2010. BMJ Open. 2014;4:e004015.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Whited JD, Datta SK, Aiello LM, Aiello LP, Cavallerano JD, Conlin PR, et al. A modeled economic analysis of a digital tele-ophthalmology system as used by three federal health care agencies for detecting proliferative diabetic retinopathy. Telemed J E Health. 2005;11:641–51.

    Article  PubMed  Google Scholar 

  14. Wilson C, Horton M, Cavallerano J, Aiello LM. Addition of primary care-based retinal imaging technology to an existing eye care professional referral program increased the rate of surveillance and treatment of diabetic retinopathy. Diabetes Care. 2005;28:318–22.

    Article  PubMed  Google Scholar 

  15. Silva PS, Cavallerano JD, Aiello LM, Aiello LP. Telemedicine and diabetic retinopathy: moving beyond retinal screening. Arch Ophthalmol. 2011;129:236–42.

    Article  PubMed  Google Scholar 

  16. Program, N.D.E.S. 2010–2011 Annual report. http://diabeticeye.screening.nhs.uk/reports. Accessed 16 July 2014.

  17. Li B, Li HK. Automated analysis of diabetic retinopathy images: principles, recent developments, and emerging trends. Curr Diab Rep. 2013;13:453–9.

    Article  PubMed  Google Scholar 

  18. Mookiah MR, Acharya UR, Chua CK, Lim CM, Ng EY, Laude A. Computer-aided diagnosis of diabetic retinopathy: a review. Comput Biol Med. 2013;43:2136–55.

    Article  PubMed  Google Scholar 

  19. Teng T, Lefley M, Claremont D. Progress towards automated diabetic ocular screening: a review of image analysis and intelligent systems for diabetic retinopathy. Med Biol Eng Comput. 2002;40:2–13.

    Article  CAS  PubMed  Google Scholar 

  20. Fleming AD, Philip S, Goatman KA, Prescott GJ, Sharp PF, Olson JA. The evidence for automated grading in diabetic retinopathy screening. Curr Diabetes Rev. 2011;7:246–52.

    Article  PubMed  Google Scholar 

  21. Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 1991;98:786–806.

  22. Silva PS, Cavallerano JD, Aiello LM. Ocular telehealth initiatives in diabetic retinopathy. Curr Diab Rep. 2009;9:265–71.

    Article  PubMed  Google Scholar 

  23. Li HK, Horton M, Bursell SE, Cavallerano J, Zimmer-Galler I, Tennant M, et al. Telehealth practice recommendations for diabetic retinopathy, second edition. Telemed J E Health. 2011;17:814–37.

    Article  PubMed  Google Scholar 

  24. Patton N, Aslam TM, MacGillivray T, Deary IJ, Dhillon B, Eikelboom RH, et al. Retinal image analysis: concepts, applications and potential. Prog Retin Eye Res. 2006;25:99–127.

    Article  PubMed  Google Scholar 

  25. Li HK, Esquivel A, Hubbard LD, Florez-Arango JF, Danis RP, Krupinski EA. Mosaics versus early treatment diabetic retinopathy seven standard fields for evaluation of diabetic retinopathy severity. Retina. 2011;31:1553–63.

    Article  PubMed  Google Scholar 

  26. Silva PS, Cavallerano JD, Sun JK, Soliman AZ, Aiello LM, Aiello LP. Peripheral lesions identified by mydriatic ultrawide field imaging: distribution and potential impact on diabetic retinopathy severity. Ophthalmology. 2013;120:2587–95.

    Article  PubMed  Google Scholar 

  27. Hubbard LD, Sun W, Cleary PA, Danis RP, Hainsworth DP, Peng Q, et al. Comparison of digital and film grading of diabetic retinopathy severity in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Arch Ophthalmol. 2011;129:718–26.

    Article  PubMed  Google Scholar 

  28. Gangaputra S, Almukhtar T, Glassman AR, Aiello LP, Bressler N, Bressler SB, et al. Comparison of film and digital fundus photographs in eyes of individuals with diabetes mellitus. Invest Ophthalmol Vis Sci. 2011;52:6168–73.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Silva PS, Cavallerano JD, Tolls D, Omar A, Thakore K, Patel B, et al. Potential efficiency benefits of nonmydriatic ultrawide field retinal imaging in an ocular telehealth diabetic retinopathy program. Diabetes Care. 2014;37:50–5.

    Article  PubMed  Google Scholar 

  30. Ahmed J, Ward TP, Bursell SE, Aiello LM, Cavallerano JD, Vigersky RA. The sensitivity and specificity of nonmydriatic digital stereoscopic retinal imaging in detecting diabetic retinopathy. Diabetes Care. 2006;29:2205–9.

    Article  PubMed  Google Scholar 

  31. Scanlon PH, Foy C, Malhotra R, Aldington SJ. The influence of age, duration of diabetes, cataract, and pupil size on image quality in digital photographic retinal screening. Diabetes Care. 2005;28:2448–53.

    Article  PubMed  Google Scholar 

  32. Fleming AD, Philip S, Goatman KA, Olson JA, Sharp PF. Automated assessment of diabetic retinal image quality based on clarity and field definition. Invest Ophthalmol Vis Sci. 2006;47:1120–5.

    Article  PubMed  Google Scholar 

  33. Maker MP, Noble J, Silva PS, Cavallerano JD, Murtha TJ, Sun JK, et al. Automated Retinal Imaging System (ARIS) compared with ETDRS protocol color stereoscopic retinal photography to assess level of diabetic retinopathy. Diabetes Technol Ther. 2012;14:515–22.

    Article  PubMed  Google Scholar 

  34. Smolek MKN N, Jaramillo A, Diamond JG, Batlle OR. Image quality and disease screening performance comparison of clinic-based and telemedicine-based retinal cameras. ARVO/ISIE Imaging Conference 2012. 2012 Poster Board Number: P55.

  35. Davis H, Russell S, Barriga E, Abramoff M, Soliz P. Vision-based, real-time retinal image quality assessment. In Computer-based medical systems, 2009. CBMS 2009. 22nd IEEE International Symposium on 2009. 1–6.

  36. Spencer T, Phillips RP, Sharp PF, Forrester JV. Automated detection and quantification of microaneurysms in fluorescein angiograms. Graefes Arch Clin Exp Ophthalmol. 1992;230:36–41.

    Article  CAS  PubMed  Google Scholar 

  37. Diabetic retinopathy study. Report Number 6. Design, methods, and baseline results. Report Number 7. A modification of the Airlie House classification of diabetic retinopathy. Prepared by the Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 1981;21:1–226.

  38. Antal B, Hajdu A. An ensemble-based system for microaneurysm detection and diabetic retinopathy grading. IEEE Trans Biomed Eng. 2012;59:1720–6.

    Article  PubMed  Google Scholar 

  39. Fleming AD, Goatman KA, Philip S, Williams GJ, Prescott GJ, Scotland GS, et al. The role of haemorrhage and exudate detection in automated grading of diabetic retinopathy. Br J Ophthalmol. 2010;94:706–11.

    Article  PubMed  Google Scholar 

  40. Quellec G, Lamard M, Abramoff MD, Decenciere E, Lay B, Erginay A, et al. A multiple-instance learning framework for diabetic retinopathy screening. Med Image Anal. 2012;16:1228–40.

    Article  PubMed  Google Scholar 

  41. Quellec G, Lamard M, Cazuguel G, Bekri L, Daccache W, Roux C, et al. Automated assessment of diabetic retinopathy severity using content-based image retrieval in multimodal fundus photographs. Invest Ophthalmol Vis Sci. 2011;52:8342–8.

    Article  PubMed  Google Scholar 

  42. http://www.medalytix.com Accessed 15th July 2014.

  43. Philip S, Fleming AD, Goatman KA, Fonseca S, McNamee P, Scotland GS, et al. The efficacy of automated “disease/no disease” grading for diabetic retinopathy in a systematic screening programme. Br J Ophthalmol. 2007;91:1512–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Fleming AD, Philip S, Goatman KA, Olson JA, Sharp PF. Automated microaneurysm detection using local contrast normalization and local vessel detection. IEEE Trans Med Imaging. 2006;25:1223–32.

    Article  PubMed  Google Scholar 

  45. Fleming AD, Goatman KA, Philip S, Prescott GJ, Sharp PF, Olson JA. Automated grading for diabetic retinopathy: a large-scale audit using arbitration by clinical experts. Br J Ophthalmol. 2010;94:1606–10. Key paper for the iGrading Program.

    Article  PubMed  Google Scholar 

  46. Scotland GS, McNamee P, Philip S, Fleming AD, Goatman KA, Prescott GJ, et al. Cost-effectiveness of implementing automated grading within the national screening programme for diabetic retinopathy in Scotland. Br J Ophthalmol. 2007;91:1518–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Scotland GS, McNamee P, Fleming AD, Goatman KA, Philip S, Prescott GJ, et al. Costs and consequences of automated algorithms versus manual grading for the detection of referable diabetic retinopathy. Br J Ophthalmol. 2010;94:712–9.

    Article  CAS  PubMed  Google Scholar 

  48. Goatman K, Charnley A, Webster L, Nussey S. Assessment of automated disease detection in diabetic retinopathy screening using two-field photography. PLoS One. 2011;6:e27524.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. http://www.hubbletelemedical.com Accessed 15th July 2014.

  50. Karnowski TP, Giancardo L, Li Y, Tobin KW, Chaum E. Retina image analysis and ocular telehealth: The Oak Ridge National Laboratory–Hamilton Eye Institute case study. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:7140–3.

    PubMed  Google Scholar 

  51. Garg S, Jani PD, Kshirsagar AV, King B, Chaum E. Telemedicine and retinal imaging for improving diabetic retinopathy evaluation. Arch Intern Med. 2012;172:1677–8.

    Article  PubMed  Google Scholar 

  52. Tobin KW, Chaum E, Govindasamy VP, Karnowski TP. Detection of anatomic structures in human retinal imagery. IEEE Trans Med Imaging. 2007;26:1729–39.

    Article  PubMed  Google Scholar 

  53. Chaum E, Karnowski TP, Govindasamy VP, Abdelrahman M, Tobin KW. Automated diagnosis of retinopathy by content-based image retrieval. Retina. 2008;28:1463–77. Key paper for the TRIAD program.

    Article  PubMed  Google Scholar 

  54. Tobin KW, Abramoff MD, Chaum E, Giancardo L, Govindasamy V, Karnowski TP, et al. Using a patient image archive to diagnose retinopathy. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:5441–4.

    PubMed  Google Scholar 

  55. Tobin KW, Abdelrahman M, Chaum E, Govindasamy V, Karnowski TP. A probabilistic framework for content-based diagnosis of retinal disease. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:6744–7.

    PubMed  Google Scholar 

  56. http://www.eyediagnosis.net Accessed 15th July 2014.

  57. Niemeijer M, Abramoff MD, van Ginneken B. Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening. Med Image Anal. 2006;10:888–98.

    Article  PubMed  Google Scholar 

  58. Niemeijer M, van Ginneken B, Staal J, Suttorp-Schulten MS, Abramoff MD. Automatic detection of red lesions in digital color fundus photographs. IEEE Trans Med Imaging. 2005;24:584–92.

    Article  PubMed  Google Scholar 

  59. Quellec G, Lamard M, Josselin PM, Cazuguel G, Cochener B, Roux C. Optimal wavelet transform for the detection of microaneurysms in retina photographs. IEEE Trans Med Imaging. 2008;27:1230–41.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Niemeijer M, van Ginneken B, Russell SR, Suttorp-Schulten MS, Abramoff MD. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Invest Ophthalmol Vis Sci. 2007;48:2260–7.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Tang L, Niemeijer M, Reinhardt JM, Garvin MK, Abramoff MD. Splat feature classification with application to retinal hemorrhage detection in fundus images. IEEE Trans Med Imaging. 2013;32:364–75.

    Article  PubMed  Google Scholar 

  62. Abramoff MD, Niemeijer M, Suttorp-Schulten MS, Viergever MA, Russell SR, van Ginneken B. Evaluation of a system for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes. Diabetes Care. 2008;31:193–8.

    Article  PubMed  Google Scholar 

  63. Abramoff MD, Reinhardt JM, Russell SR, Folk JC, Mahajan VB, Niemeijer M, et al. Automated early detection of diabetic retinopathy. Ophthalmology. 2010;117:1147–54.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Niemeijer M, Abramoff MD, van Ginneken B. Information fusion for diabetic retinopathy CAD in digital color fundus photographs. IEEE Trans Med Imaging. 2009;28:775–85.

    Article  PubMed  Google Scholar 

  65. Abramoff MD, Folk JC, Han DP, Walker JD, Williams DF, Russell SR, et al. Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol. 2013;131:351–7. Key paper for the IDx Program.

    Article  PubMed  Google Scholar 

  66. In http://www.retmarker.com/ Accessed 15th July 2014.

  67. Pires Dias JM, Oliveira CM, da Silva Cruz LA. Retinal image quality assessment using generic image quality indicators. Information Fusion. 2014;19:73–90.

    Article  Google Scholar 

  68. Nunes S, Pires I, Rosa A, Duarte L, Bernardes R, Cunha-Vaz J. Microaneurysm turnover is a biomarker for diabetic retinopathy progression to clinically significant macular edema: findings for type 2 diabetics with nonproliferative retinopathy. Ophthalmologica. 2009;223:292–7.

    Article  PubMed  Google Scholar 

  69. Bernardes R, Nunes S, Pereira I, Torrent T, Rosa A, Coelho D, et al. Computer-assisted microaneurysm turnover in the early stages of diabetic retinopathy. Ophthalmologica. 2009;223:284–91. Key paper for the Retmarker program.

    Article  PubMed  Google Scholar 

  70. Nunes S, Ribeiro L, Lobo C, Cunha-Vaz J. Three different phenotypes of mild nonproliferative diabetic retinopathy with different risks for development of clinically significant macular edema. Invest Ophthalmol Vis Sci. 2013;54:4595–604.

    Article  PubMed  Google Scholar 

  71. Haritoglou C, Kernt M, Neubauer A, Gerss J, Oliveira CM, Kampik A, et al. Microaneurysm formation rate as a predictive marker for progression to clinically significant macular edema in nonproliferative diabetic retinopathy. Retina. 2014;34:157–64.

    Article  CAS  PubMed  Google Scholar 

  72. Ribeiro ML, Nunes SG, Cunha-Vaz JG. Microaneurysm turnover at the macula predicts risk of development of clinically significant macular edema in persons with mild nonproliferative diabetic retinopathy. Diabetes Care. 2013;36:1254–9.

    Article  PubMed Central  PubMed  Google Scholar 

  73. http://retinalyze.net. Accessed 10th August 2014.

  74. Larsen N, Godt J, Grunkin M, Lund-Andersen H, Larsen M. Automated detection of diabetic retinopathy in a fundus photographic screening population. Invest Ophthalmol Vis Sci. 2003;44:767–71.

    Article  PubMed  Google Scholar 

  75. Hansen AB, Hartvig NV, Jensen MS, Borch-Johnsen K, Lund-Andersen H, Larsen M. Diabetic retinopathy screening using digital non-mydriatic fundus photography and automated image analysis. Acta Ophthalmol Scand. 2004;82:666–72.

    Article  PubMed  Google Scholar 

  76. Larsen M, Godt J, Larsen N, Lund-Andersen H, Sjolie AK, Agardh E, et al. Automated detection of fundus photographic red lesions in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2003;44:761–6.

    Article  PubMed  Google Scholar 

  77. Bouhaimed M, Gibbins R, Owens D. Automated detection of diabetic retinopathy: results of a screening study. Diabetes Technol Ther. 2008;10:142–8. Key paper for the retinalyze program.

    Article  PubMed  Google Scholar 

  78. MESSIDOR: Digital Retinal Images. http://messidor.crihan.fr/download-en.php.

  79. The ROC website—University of Iowa. http://webeye.ophth.uiowa.edu/ROC/var.1/www/.

  80. Mitry D, Peto T, Hayat S, Morgan JE, Khaw KT, Foster PJ. Crowdsourcing as a novel technique for retinal fundus photography classification: analysis of images in the EPIC Norfolk cohort on behalf of the UK Biobank Eye and Vision Consortium. PLoS One. 2013;8:e71154.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Brady, C.J. ARVO 2014. Abstract 4826 Available at http://www.arvo.org/webs/am2014/abstract/sessions/444.pdf.

  82. Trucco E, Ruggeri A, Karnowski T, Giancardo L, Chaum E, Hubschman JP, et al. Validating retinal fundus image analysis algorithms: issues and a proposal. Invest Ophthalmol Vis Sci. 2013;54:3546–59. Provides a framework and reference standard for the evaluation of automated retinal image anaylsis systems.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by a grant from Fight for Sight, UK (Grant number 1987), The Special Trustees of Moorfields Eye Hospital and the National Institute for Health Research (NIHR) Biomedical Research Centre based at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology.

Compliance with Ethics Guidelines

Conflict of Interest

Dawn A. Sim, Pearse A. Keane, Adnan Tufail, Lloyd Paul Aiello and Paolo S. Silva declare that they have no conflict of interest.

Catherine A. Egan reports grants and personal fees from Novartis. Her husband is a retinal specialist and receives honoraria, grants and speakers fees from academic and pharmaceutical industry relevant to this work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo S. Silva.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Retinopathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sim, D.A., Keane, P.A., Tufail, A. et al. Automated Retinal Image Analysis for Diabetic Retinopathy in Telemedicine. Curr Diab Rep 15, 14 (2015). https://doi.org/10.1007/s11892-015-0577-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0577-6

Keywords

Navigation