Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Balancing natural killer cell activation through paired receptors

Subjects

Key Points

  • A family of molecules, including CD226, T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) and CD96, that bind nectin and nectin-like proteins has recently emerged as important regulators of natural killer (NK) cell functions.

  • This family of molecules regulates NK cell adhesion and cytotoxicity, immune synapse formation, cytokine secretion and crosstalk with dendritic cells.

  • This family of molecules has important roles in the pathophysiological processes of cancer, autoimmunity and viral infection.

  • The signalling properties of CD226, TIGIT and CD96 remain poorly characterized. Future work should discriminate the relative role of TIGIT and CD96 as negative regulators of CD226 activation in human and mouse immune responses.

  • Other well-defined paired receptors, such as the killer immunoglobulin-like receptor family and C-type lectin-like CD94–NKG2 receptor family molecules, control NK cell functions.

  • CD226, TIGIT and CD96 are crucial regulators of lymphocyte-mediated effector functions against tumours and may be promising new therapeutic targets for the treatment of malignancies.

Abstract

Natural killer (NK) cells are innate lymphocytes that are crucial for the control of infections and malignancies. NK cells express a variety of inhibitory and activating receptors that facilitate fine discrimination between damaged and healthy cells. Among them, a family of molecules that bind nectin and nectin-like proteins has recently emerged and has been shown to function as an important regulator of NK cell functions. These molecules include CD226, T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT), CD96, and cytotoxic and regulatory T cell molecule (CRTAM). In this Review, we focus on the recent advances in our understanding of how these receptors regulate NK cell biology and of their roles in pathologies such as cancer, infection and autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mode of interactions of nectin and nectin-like molecules.
Figure 2: Regulation of NK cell functions by CD226, CD96 and TIGIT.
Figure 3: TIGIT, CD226, CD96 and CRTAM ligand specificity and signalling.
Figure 4: Regulation of NK cell-mediated cancer immunosurveillance through CD155 expression.

Similar content being viewed by others

References

  1. Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nature Immunol. 9, 503–510 (2008).

    CAS  Google Scholar 

  2. Long, E. O., Kim, H. S., Liu, D., Peterson, M. E. & Rajagopalan, S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu. Rev. Immunol. 31, 227–258 (2013). This is an outstanding and comprehensive review on the control of NK cell functions through activating and inhibitory receptors.

    CAS  PubMed  Google Scholar 

  3. Karre, K. Natural killer cell recognition of missing self. Nature Immunol. 9, 477–480 (2008).

    Google Scholar 

  4. Lanier, L. L. Up on the tightrope: natural killer cell activation and inhibition. Nature Immunol. 9, 495–502 (2008).

    CAS  Google Scholar 

  5. Chan, C. J. et al. The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nature Immunol. 15, 431–438 (2014). This is the first paper showing a crucial role for CD96 in limiting NK cell functions in vivo using Cd96−/− mice.

    CAS  Google Scholar 

  6. Stanietsky, N. et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc. Natl Acad. Sci. USA 106, 17858–17863 (2009). This study shows a potential role for TIGIT in limiting human NK cell cytotoxicity.

    CAS  PubMed  Google Scholar 

  7. Gilfillan, S. et al. DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J. Exp. Med. 205, 2965–2973 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Shibuya, A. et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 4, 573–581 (1996).

    CAS  PubMed  Google Scholar 

  9. Bottino, C. et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J. Exp. Med. 198, 557–567 (2003). References 8 and 9 report that CD226 engagement by its ligands, CD112 and CD155, on target cells stimulates NK cell cytolytic functions.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sakisaka, T. & Takai, Y. Biology and pathology of nectins and nectin-like molecules. Curr. Opin. Cell Biol. 16, 513–521 (2004).

    CAS  PubMed  Google Scholar 

  11. Chan, C. J., Smyth, M. J. & Martinet, L. Molecular mechanisms of natural killer cell activation in response to cellular stress. Cell Death Differ. 21, 5–14 (2014).

    CAS  PubMed  Google Scholar 

  12. Bernhardt, G. TACTILE becomes tangible: CD96 discloses its inhibitory peculiarities. Nature Immunol. 15, 406–408 (2014).

    CAS  Google Scholar 

  13. Minton, K. Natural killer cells: a TACTILE restraint. Nature Rev. Immunol. 14, 285 (2014).

    Google Scholar 

  14. Yu, X. et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nature Immunol. 10, 48–57 (2009). This is the first identification of TIGIT and its inhibitory functions through its interaction with CD155.

    CAS  Google Scholar 

  15. Seth, S. et al. Heterogeneous expression of the adhesion receptor CD226 on murine NK and T cells and its function in NK-mediated killing of immature dendritic cells. J. Leukoc. Biol. 86, 91–101 (2009).

    CAS  PubMed  Google Scholar 

  16. Tahara-Hanaoka, S. et al. Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int. Immunol. 16, 533–538 (2004).

    CAS  PubMed  Google Scholar 

  17. Liu, J. et al. Crystal structure of cell adhesion molecule nectin-2/CD112 and its binding to immune receptor DNAM-1/CD226. J. Immunol. 188, 5511–5520 (2012).

    CAS  PubMed  Google Scholar 

  18. Hou, S. et al. CD226 protein is involved in immune synapse formation and triggers natural killer (NK) cell activation via its first extracellular domain. J. Biol. Chem. 289, 6969–6977 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tahara-Hanaoka, S. et al. Tumor rejection by the poliovirus receptor family ligands of the DNAM-1 (CD226) receptor. Blood 107, 1491–1496 (2006).

    CAS  PubMed  Google Scholar 

  20. Stanietsky, N. et al. Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR. Eur. J. Immunol. 43, 2138–2150 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Boles, K. S. et al. A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. Eur. J. Immunol. 39, 695–703 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Levin, S. D. et al. Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur. J. Immunol. 41, 902–915 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Georgiev, H. et al. To the Editor: TIGIT versus CD226: hegemony or coexistence? Eur. J. Immunol. 44, 307–308 (2014).

    CAS  PubMed  Google Scholar 

  24. Johnston, R. J. et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function. Cancer Cell 26, 923–937 (2014). This study shows that TIGIT is expressed by PD1+ exhausted tumour-infiltrating T cells and that targeting these receptors with monoclonal antibodies represents a promising strategy to restore CD8+ T cell functions in cancer or in chronic infectious disease.

    CAS  PubMed  Google Scholar 

  25. Wang, P. L., O'Farrell, S., Clayberger, C. & Krensky, A. M. Identification and molecular cloning of tactile. A novel human T cell activation antigen that is a member of the Ig gene superfamily. J. Immunol. 148, 2600–2608 (1992).

    CAS  PubMed  Google Scholar 

  26. Meyer, D. et al. CD96 interaction with CD155 via its first Ig-like domain is modulated by alternative splicing or mutations in distal Ig-like domains. J. Biol. Chem. 284, 2235–2244 (2009).

    CAS  PubMed  Google Scholar 

  27. Seth, S. et al. The murine pan T cell marker CD96 is an adhesion receptor for CD155 and nectin-1. Biochem. Biophys. Res. Commun. 364, 959–965 (2007).

    CAS  PubMed  Google Scholar 

  28. de Andrade, L. F., Smyth, M. J. & Martinet, L. DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins. Immunol. Cell Biol. 92, 237–244 (2014).

    PubMed  Google Scholar 

  29. Fuchs, A., Cella, M., Giurisato, E., Shaw, A. S. & Colonna, M. Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J. Immunol. 172, 3994–3998 (2004).

    CAS  PubMed  Google Scholar 

  30. Stengel, K. F. et al. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc. Natl Acad. Sci. USA 109, 5399–5404 (2012).

    CAS  PubMed  Google Scholar 

  31. Liu, S. et al. Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ. 20, 456–464 (2013).

    CAS  PubMed  Google Scholar 

  32. Orange, J. S. Formation and function of the lytic NK-cell immunological synapse. Nature Rev. Immunol. 8, 713–725 (2008).

    CAS  Google Scholar 

  33. Ramsbottom, K. M. et al. Cutting edge: DNAX accessory molecule 1-deficient CD8+ T cells display immunological synapse defects that impair antitumor immunity. J. Immunol. 192, 553–557 (2014).

    CAS  PubMed  Google Scholar 

  34. Lagrue, K. et al. The central role of the cytoskeleton in mechanisms and functions of the NK cell immune synapse. Immunol. Rev. 256, 203–221 (2013).

    CAS  PubMed  Google Scholar 

  35. Gross, C. C., Brzostowski, J. A., Liu, D. & Long, E. O. Tethering of intercellular adhesion molecule on target cells is required for LFA-1-dependent NK cell adhesion and granule polarization. J. Immunol. 185, 2918–2926 (2010).

    CAS  PubMed  Google Scholar 

  36. Vyas, Y. M. et al. Spatial organization of signal transduction molecules in the NK cell immune synapses during MHC class I-regulated noncytolytic and cytolytic interactions. J. Immunol. 167, 4358–4367 (2001).

    CAS  PubMed  Google Scholar 

  37. Shibuya, K. et al. CD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation. J. Exp. Med. 198, 1829–1839 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ralston, K. J. et al. The LFA-1-associated molecule PTA-1 (CD226) on T cells forms a dynamic molecular complex with protein 4.1G and human discs large. J. Biol. Chem. 279, 33816–33828 (2004).

    CAS  PubMed  Google Scholar 

  39. Shibuya, K. et al. Physical and functional association of LFA-1 with DNAM-1 adhesion molecule. Immunity 11, 615–623 (1999).

    CAS  PubMed  Google Scholar 

  40. Bryceson, Y. T., Ljunggren, H. G. & Long, E. O. Minimal requirement for induction of natural cytotoxicity and intersection of activation signals by inhibitory receptors. Blood 114, 2657–2666 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lozano, E., Dominguez-Villar, M., Kuchroo, V. & Hafler, D. A. The TIGIT/CD226 axis regulates human T cell function. J. Immunol. 188, 3869–3875 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lozano, E., Joller, N., Cao, Y., Kuchroo, V. K. & Hafler, D. A. The CD226/CD155 interaction regulates the proinflammatory (TH1/TH17)/anti-inflammatory (TH2) balance in humans. J. Immunol. 191, 3673–3680 (2013).

    CAS  PubMed  Google Scholar 

  43. Bi, J. et al. TIGIT safeguards liver regeneration through regulating NK cell-hepatocyte crosstalk. Hepatology 60, 1389–1398 (2014).

    CAS  PubMed  Google Scholar 

  44. Li, M. et al. T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-γ production of natural killer cells via β-arrestin 2-mediated negative signaling. J. Biol. Chem. 289, 17647–17657 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Pende, D. et al. Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction. Blood 107, 2030–2036 (2006).

    CAS  PubMed  Google Scholar 

  46. Maier, M. K. et al. The adhesion receptor CD155 determines the magnitude of humoral immune responses against orally ingested antigens. Eur. J. Immunol. 37, 2214–2225 (2007).

    CAS  PubMed  Google Scholar 

  47. Kamran, N. et al. Toll-like receptor ligands induce expression of the costimulatory molecule CD155 on antigen-presenting cells. PLoS ONE 8, e54406 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Oda, T., Ohka, S. & Nomoto, A. Ligand stimulation of CD155alpha inhibits cell adhesion and enhances cell migration in fibroblasts. Biochem. Biophys. Res. Commun. 319, 1253–1264 (2004).

    CAS  PubMed  Google Scholar 

  49. Sato, T. et al. Common signaling pathway is used by the trans-interaction of Necl-5/Tage4/PVR/CD155 and nectin, and of nectin and nectin during the formation of cell-cell adhesion. Cancer Sci. 96, 578–589 (2005).

    CAS  PubMed  Google Scholar 

  50. Walzer, T., Dalod, M., Robbins, S. H., Zitvogel, L. & Vivier, E. Natural-killer cells and dendritic cells: “l'union fait la force”. Blood 106, 2252–2258 (2005).

    CAS  PubMed  Google Scholar 

  51. Morandi, B. et al. Dendritic cell editing by activated natural killer cells results in a more protective cancer-specific immune response. PLoS ONE 7, e39170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zingoni, A., Ardolino, M., Santoni, A. & Cerboni, C. NKG2D and DNAM-1 activating receptors and their ligands in NK-T cell interactions: role in the NK cell-mediated negative regulation of T cell responses. Frontiers Immunol. 3, 408 (2012).

    Google Scholar 

  53. Ardolino, M. et al. DNAM-1 ligand expression on Ag-stimulated T lymphocytes is mediated by ROS-dependent activation of DNA-damage response: relevance for NK-T cell interaction. Blood 117, 4778–4786 (2011).

    CAS  PubMed  Google Scholar 

  54. O'Leary, J. G., Goodarzi, M., Drayton, D. L. & von Andrian, U. H. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nature Immunol. 7, 507–516 (2006).

    CAS  Google Scholar 

  55. Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Paust, S., Senman, B. & von Andrian, U. H. Adaptive immune responses mediated by natural killer cells. Immunol. Rev. 235, 286–296 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Foley, B. et al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood 119, 2665–2674 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lopez-Verges, S. et al. Expansion of a unique CD57+NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc. Natl Acad. Sci. USA 108, 14725–14732 (2011).

    CAS  PubMed  Google Scholar 

  59. Nabekura, T. et al. Costimulatory molecule DNAM-1 is essential for optimal differentiation of memory natural killer cells during mouse cytomegalovirus infection. Immunity 40, 225–234 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Shibuya, A., Lanier, L. L. & Phillips, J. H. Protein kinase C is involved in the regulation of both signaling and adhesion mediated by DNAX accessory molecule-1 receptor. J. Immunol. 161, 1671–1676 (1998).

    CAS  PubMed  Google Scholar 

  61. Bryceson, Y. T., March, M. E., Ljunggren, H. G. & Long, E. O. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107, 159–166 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim, H. S., Das, A., Gross, C. C., Bryceson, Y. T. & Long, E. O. Synergistic signals for natural cytotoxicity are required to overcome inhibition by c-Cbl ubiquitin ligase. Immunity 32, 175–186 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, H. S. & Long, E. O. Complementary phosphorylation sites in the adaptor protein SLP-76 promote synergistic activation of natural killer cells. Sci. Signal. 5, ra49 (2012).

    PubMed  Google Scholar 

  64. Rozsnyay, Z. Signaling complex formation of CD44 with src-related kinases. Immunol. Lett. 68, 101–108 (1999).

    CAS  PubMed  Google Scholar 

  65. Chambers, C. A. The expanding world of co-stimulation: the two-signal model revisited. Trends Immunol. 22, 217–223 (2001).

    CAS  PubMed  Google Scholar 

  66. Soriani, A. et al. ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113, 3503–3511 (2009).

    CAS  PubMed  Google Scholar 

  67. Carlsten, M. et al. Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells. J. Immunol. 183, 4921–4930 (2009).

    CAS  PubMed  Google Scholar 

  68. El-Sherbiny, Y. M. et al. The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res. 67, 8444–8449 (2007).

    CAS  PubMed  Google Scholar 

  69. Lakshmikanth, T. et al. NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J. Clin. Invest. 119, 1251–1263 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sanchez-Correa, B. et al. Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol. Cell Biol. 90, 109–115 (2012).

    CAS  PubMed  Google Scholar 

  71. Mamessier, E. et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J. Clin. Invest. 121, 3609–3622 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Oshima, T. et al. Nectin-2 is a potential target for antibody therapy of breast and ovarian cancers. Mol. Cancer 12, 60 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Iguchi-Manaka, A. et al. Accelerated tumor growth in mice deficient in DNAM-1 receptor. J. Exp. Med. 205, 2959–2964 (2008). This paper, together with reference 7, was the first to show the role of CD226 in NK cell- and CD8+ T cell-mediated tumour immunosurveillance using Cd226−/− mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Croxford, J. L. et al. ATM-dependent spontaneous regression of early Emu-myc-induced murine B cell leukemia depends on NK and T cells. Blood 121, 2512–2521 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chan, C. J. et al. DNAM-1/CD155 interactions promote cytokine and NK cell-mediated suppression of poorly immunogenic melanoma metastases. J. Immunol. 184, 902–911 (2010).

    CAS  PubMed  Google Scholar 

  76. Smyth, M. J., Crowe, N. Y. & Godfrey, D. I. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int. Immunol. 13, 459–463 (2001).

    CAS  PubMed  Google Scholar 

  77. Welch, M. J., Teijaro, J. R., Lewicki, H. A., Colonna, M. & Oldstone, M. B. CD8 T cell defect of TNFα and IL-2 in DNAM-1 deficient mice delays clearance in vivo of a persistent virus infection. Virology 429, 163–170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Magri, G. et al. NKp46 and DNAM-1 NK-cell receptors drive the response to human cytomegalovirus-infected myeloid dendritic cells overcoming viral immune evasion strategies. Blood 117, 848–856 (2011).

    CAS  PubMed  Google Scholar 

  79. Prod'homme, V. et al. Human cytomegalovirus UL141 promotes efficient downregulation of the natural killer cell activating ligand CD112. J. Gen. Virol. 91, 2034–2039 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tomasec, P. et al. Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nature Immunol. 6, 181–188 (2005).

    CAS  Google Scholar 

  81. Matusali, G., Potesta, M., Santoni, A., Cerboni, C. & Doria, M. The human immunodeficiency virus type 1 Nef and Vpu proteins downregulate the natural killer cell-activating ligand PVR. J. Virol. 86, 4496–4504 (2012). References 79–81 show that the downregulation of CD112 and CD155 expression is a common evasion strategy developed by viruses to avoid CD226-mediated NK cell recognition.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Todd, J. A. et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nature Genet. 39, 857–864 (2007).

    CAS  PubMed  Google Scholar 

  83. Song, G., Bae, S. C., Choi, S., Ji, J. & Lee, Y. Association between the CD226 rs763361 polymorphism and susceptibility to autoimmune diseases: a meta-analysis. Lupus 21, 1522–1530 (2012).

    PubMed  Google Scholar 

  84. Du, Y. et al. Association of the CD226 single nucleotide polymorphism with systemic lupus erythematosus in the Chinese Han population. Tissue Antigens 77, 65–67 (2011).

    CAS  PubMed  Google Scholar 

  85. Maiti, A. K. et al. Non-synonymous variant (Gly307Ser) in CD226 is associated with susceptibility to multiple autoimmune diseases. Rheumatology 49, 1239–1244 (2010).

    CAS  PubMed  Google Scholar 

  86. Wieczorek, S. et al. Novel association of the CD226 (DNAM-1) Gly307Ser polymorphism in Wegener's granulomatosis and confirmation for multiple sclerosis in German patients. Genes Immun. 10, 591–595 (2009).

    CAS  PubMed  Google Scholar 

  87. Flodstrom-Tullberg, M., Bryceson, Y. T., Shi, F. D., Hoglund, P. & Ljunggren, H. G. Natural killer cells in human autoimmunity. Curr. Opin. Immunol. 21, 634–640 (2009).

    PubMed  Google Scholar 

  88. Parham, P. MHC class I molecules and KIRs in human history, health and survival. Nature Rev. Immunol. 5, 201–214 (2005).

    CAS  Google Scholar 

  89. Thielens, A., Vivier, E. & Romagne, F. NK cell MHC class I specific receptors (KIR): from biology to clinical intervention. Curr. Opin. Immunol. 24, 239–245 (2012).

    CAS  PubMed  Google Scholar 

  90. Raulet, D. H. & Vance, R. E. Self-tolerance of natural killer cells. Nature Rev. Immunol. 6, 520–531 (2006).

    CAS  Google Scholar 

  91. Huse, M., Catherine Milanoski, S. & Abeyweera, T. P. Building tolerance by dismantling synapses: inhibitory receptor signaling in natural killer cells. Immunol. Rev. 251, 143–153 (2013).

    PubMed  Google Scholar 

  92. Stebbins, C. C. et al. Vav1 dephosphorylation by the tyrosine phosphatase SHP-1 as a mechanism for inhibition of cellular cytotoxicity. Mol. Cell. Biol. 23, 6291–6299 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Abeyweera, T. P., Merino, E. & Huse, M. Inhibitory signaling blocks activating receptor clustering and induces cytoskeletal retraction in natural killer cells. J. Cell Biol. 192, 675–690 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Peterson, M. E. & Long, E. O. Inhibitory receptor signaling via tyrosine phosphorylation of the adaptor Crk. Immunity 29, 578–588 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Stewart, C. A. et al. Recognition of peptide-MHC class I complexes by activating killer immunoglobulin-like receptors. Proc. Natl Acad. Sci. USA 102, 13224–13229 (2005).

    CAS  PubMed  Google Scholar 

  96. Sivori, S. et al. Natural killer cells expressing the KIR2DS1-activating receptor efficiently kill T-cell blasts and dendritic cells: implications in haploidentical HSCT. Blood 117, 4284–4292 (2011).

    CAS  PubMed  Google Scholar 

  97. Graef, T. et al. KIR2DS4 is a product of gene conversion with KIR3DL2 that introduced specificity for HLA-A*11 while diminishing avidity for HLA-C. J. Exp. Med. 206, 2557–2572 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Rajagopalan, S. & Long, E. O. Understanding how combinations of HLA and KIR genes influence disease. J. Exp. Med. 201, 1025–1029 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Khakoo, S. I. et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305, 872–874 (2004). This study suggests that inhibitory NK cell interactions are important in determining antiviral immunity and that diminished inhibitory responses confer protection against viral infections.

    CAS  PubMed  Google Scholar 

  100. Alter, G. et al. Differential natural killer cell-mediated inhibition of HIV-1 replication based on distinct KIR/HLA subtypes. J. Exp. Med. 204, 3027–3036 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Carr, W. H. et al. Cutting edge: KIR3DS1, a gene implicated in resistance to progression to AIDS, encodes a DAP12-associated receptor expressed on NK cells that triggers NK cell activation. J. Immunol. 178, 647–651 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Malnati, M. S. et al. Peptide specificity in the recognition of MHC class I by natural killer cell clones. Science 267, 1016–1018 (1995).

    CAS  PubMed  Google Scholar 

  103. Zappacosta, F., Borrego, F., Brooks, A. G., Parker, K. C. & Coligan, J. E. Peptides isolated from HLA-Cw*0304 confer different degrees of protection from natural killer cell-mediated lysis. Proc. Natl Acad. Sci. USA 94, 6313–6318 (1997).

    CAS  PubMed  Google Scholar 

  104. Fadda, L. et al. Peptide antagonism as a mechanism for NK cell activation. Proc. Natl Acad. Sci. USA 107, 10160–10165 (2010).

    CAS  PubMed  Google Scholar 

  105. Rajagopalan, S. & Long, E. O. Antagonizing inhibition gets NK cells going. Proc. Natl Acad. Sci. USA 107, 10333–10334 (2010).

    CAS  PubMed  Google Scholar 

  106. Alter, G. & Altfeld, M. NK cells in HIV-1 infection: evidence for their role in the control of HIV-1 infection. J. Internal Med. 265, 29–42 (2009).

    CAS  PubMed  Google Scholar 

  107. Katz, G. et al. MHC class I-independent recognition of NK-activating receptor KIR2DS4. J. Immunol. 173, 1819–1825 (2004).

    CAS  PubMed  Google Scholar 

  108. Brooks, A. G., Posch, P. E., Scorzelli, C. J., Borrego, F. & Coligan, J. E. NKG2A complexed with CD94 defines a novel inhibitory natural killer cell receptor. J. Exp. Med. 185, 795–800 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Borrego, F., Ulbrecht, M., Weiss, E. H., Coligan, J. E. & Brooks, A. G. Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J. Exp. Med. 187, 813–818 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Carretero, M. et al. Specific engagement of the CD94/NKG2-A killer inhibitory receptor by the HLA-E class Ib molecule induces SHP-1 phosphatase recruitment to tyrosine-phosphorylated NKG2-A: evidence for receptor function in heterologous transfectants. Eur. J. Immunol. 28, 1280–1291 (1998).

    CAS  PubMed  Google Scholar 

  111. Lanier, L. L., Corliss, B., Wu, J. & Phillips, J. H. Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity 8, 693–701 (1998).

    CAS  PubMed  Google Scholar 

  112. Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–799 (1998).

    CAS  PubMed  Google Scholar 

  113. Tomasec, P. et al. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287, 1031 (2000).

    CAS  PubMed  Google Scholar 

  114. Bossard, C. et al. HLA-E/beta2 microglobulin overexpression in colorectal cancer is associated with recruitment of inhibitory immune cells and tumor progression. Int. J. Cancer 131, 855–863 (2012).

    CAS  PubMed  Google Scholar 

  115. Kraemer, T., Blasczyk, R. & Bade-Doeding, C. HLA-E: a novel player for histocompatibility. J. Immunol. Res. 2014, 352160 (2014).

    PubMed  PubMed Central  Google Scholar 

  116. Vance, R. E., Kraft, J. R., Altman, J. D., Jensen, P. E. & Raulet, D. H. Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b). J. Exp. Med. 188, 1841–1848 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Orr, M. T. et al. Development and function of CD94-deficient natural killer cells. PLoS ONE 5, e15184 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Fang, M. et al. CD94 is essential for NK cell-mediated resistance to a lethal viral disease. Immunity 34, 579–589 (2011). This study using CD94-deficient mice shows that the activating receptor formed by CD94 and NKG2E is essential for the resistance of C57BL/6 mice to mousepox.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Guma, M. et al. Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 104, 3664–3671 (2004).

    CAS  PubMed  Google Scholar 

  120. Beziat, V. et al. CMV drives clonal expansion of NKG2C+ NK cells expressing self-specific KIRs in chronic hepatitis patients. Eur. J. Immunol. 42, 447–457 (2012).

    CAS  PubMed  Google Scholar 

  121. Guma, M. et al. Expansion of CD94/NKG2C+ NK cells in response to human cytomegalovirus-infected fibroblasts. Blood 107, 3624–3631 (2006).

    CAS  PubMed  Google Scholar 

  122. Lopez-Botet, M., Muntasell, A. & Vilches, C. The CD94/NKG2C+ NK-cell subset on the edge of innate and adaptive immunity to human cytomegalovirus infection. Semin. Immunol. 26, 145–151 (2014).

    CAS  PubMed  Google Scholar 

  123. Kim, S. et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436, 709–713 (2005).

    CAS  PubMed  Google Scholar 

  124. Anfossi, N. et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity 25, 331–342 (2006).

    CAS  PubMed  Google Scholar 

  125. Viant, C. et al. SHP-1-mediated inhibitory signals promote responsiveness and anti-tumour functions of natural killer cells. Nature Commun. 5, 5108 (2014).

    CAS  Google Scholar 

  126. Elliott, J. M. & Yokoyama, W. M. Unifying concepts of MHC-dependent natural killer cell education. Trends Immunol. 32, 364–372 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Tripathy, S. K. et al. Continuous engagement of a self-specific activation receptor induces NK cell tolerance. J. Exp. Med. 205, 1829–1841 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Pradeu, T., Jaeger, S. & Vivier, E. The speed of change: towards a discontinuity theory of immunity? Nature Rev. Immunol. 13, 764–769 (2013). This is an outstanding review on the formulation of a new immune paradigm 'the discontinuity theory'.

    CAS  Google Scholar 

  129. Seth, S. et al. Intranodal interaction with dendritic cells dynamically regulates surface expression of the co-stimulatory receptor CD226 protein on murine T cells. J. Biol. Chem. 286, 39153–39163 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Callahan, M. K. & Wolchok, J. D. At the Bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy. J. Leukoc. Biol. 94, 41–53 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Koyama, M. et al. Promoting regulation via the inhibition of DNAM-1 after transplantation. Blood 121, 3511–3520 (2013).

    CAS  PubMed  Google Scholar 

  132. Takai, Y., Miyoshi, J., Ikeda, W. & Ogita, H. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nature Rev. Mol. Cell Biol. 9, 603–615 (2008).

    CAS  Google Scholar 

  133. Erickson, B. M., Thompson, N. L. & Hixson, D. C. Tightly regulated induction of the adhesion molecule necl-5/CD155 during rat liver regeneration and acute liver injury. Hepatology 43, 325–334 (2006).

    CAS  PubMed  Google Scholar 

  134. Hirota, T., Irie, K., Okamoto, R., Ikeda, W. & Takai, Y. Transcriptional activation of the mouse Necl-5/Tage4/PVR/CD155 gene by fibroblast growth factor or oncogenic Ras through the Raf–MEK–ERK–AP-1 pathway. Oncogene 24, 2229–2235 (2005).

    CAS  PubMed  Google Scholar 

  135. Sloan, K. E. et al. CD155/PVR plays a key role in cell motility during tumor cell invasion and migration. BMC Cancer 4, 73 (2004).

    PubMed  PubMed Central  Google Scholar 

  136. Tane, S. et al. The role of Necl-5 in the invasive activity of lung adenocarcinoma. Exp. Mol. Pathol. 94, 330–335 (2013).

    CAS  PubMed  Google Scholar 

  137. Nakai, R. et al. Overexpression of Necl-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci. 101, 1326–1330 (2010).

    CAS  PubMed  Google Scholar 

  138. Morimoto, K. et al. Interaction of cancer cells with platelets mediated by Necl-5/poliovirus receptor enhances cancer cell metastasis to the lungs. Oncogene 27, 264–273 (2008).

    CAS  PubMed  Google Scholar 

  139. Vassena, L., Giuliani, E., Matusali, G., Cohen, E. & Doria, M. The human immunodeficiency virus type 1 Vpr protein upregulates PVR via activation of the ATR-mediated DNA damage response pathway. J. General Virol. 94, 2664–2669 (2013).

    CAS  Google Scholar 

  140. Cerboni, C. et al. The DNA damage response: a common pathway in the regulation of NKG2D and DNAM-1 ligand expression in normal, infected, and cancer cells. Front. Immunol. 4, 508 (2014).

    PubMed  PubMed Central  Google Scholar 

  141. Kennedy, J. et al. A molecular analysis of NKT cells: identification of a class-I restricted T cell-associated molecule (CRTAM). J. Leukoc. Biol. 67, 725–734 (2000).

    CAS  PubMed  Google Scholar 

  142. Arase, N. et al. Heterotypic interaction of CRTAM with Necl2 induces cell adhesion on activated NK cells and CD8+ T cells. Int. Immunol. 17, 1227–1237 (2005).

    CAS  PubMed  Google Scholar 

  143. Boles, K. S., Barchet, W., Diacovo, T., Cella, M. & Colonna, M. The tumor suppressor TSLC1/NECL-2 triggers NK-cell and CD8+ T-cell responses through the cell-surface receptor CRTAM. Blood 106, 779–786 (2005).

    CAS  PubMed  Google Scholar 

  144. Takeuchi, A. et al. CRTAM confers late-stage activation of CD8+ T cells to regulate retention within lymph node. J. Immunol. 183, 4220–4228 (2009).

    CAS  PubMed  Google Scholar 

  145. Yeh, J. H., Sidhu, S. S. & Chan, A. C. Regulation of a late phase of T cell polarity and effector functions by Crtam. Cell 132, 846–859 (2008). This article provides an in-depth analysis of the role and signalling of CRTAM in CD4+ T cells using CRTAM-deficient mice.

    CAS  PubMed  Google Scholar 

  146. Ikeda, W. et al. Nectin-like molecule-5/Tage4 enhances cell migration in an integrin-dependent, Nectin-3-independent manner. J. Biol. Chem. 279, 18015–18025 (2004).

    CAS  PubMed  Google Scholar 

  147. Freistadt, M. S. & Eberle, K. E. Physical association between CD155 and CD44 in human monocytes. Mol. Immunol. 34, 1247–1257 (1997).

    CAS  PubMed  Google Scholar 

  148. Mueller, S. & Wimmer, E. Recruitment of nectin-3 to cell-cell junctions through trans-heterophilic interaction with CD155, a vitronectin and poliovirus receptor that localizes to αvβ3 integrin-containing membrane microdomains. J. Biol. Chem. 278, 31251–31260 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of their laboratory for contributions in this area. L.M. and M.J.S. are supported by a National Health and Medical Research Council of Australia Fellowship and Project Grant. L.M. is supported by the Association pour la Recherche Contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Smyth.

Ethics declarations

Competing interests

M.J.S. holds a provisional patent “Immunoreceptor modulation for treating cancer and viral infections”. L.M. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinet, L., Smyth, M. Balancing natural killer cell activation through paired receptors. Nat Rev Immunol 15, 243–254 (2015). https://doi.org/10.1038/nri3799

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3799

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing