
1 

 

Rainfall and streamflow sensor network design: a review of 1 

applications, classification, and a proposed framework 2 

Juan Carlos Chacon-Hurtado1, Leonardo Alfonso1, Dimitri Solomatine 1, 2 
3 

1 Department of Integrated Water Systems and Governance, UNESCO-IHE, Institute for Water Education, Delft, 4 

the Netherlands. 5 
2 Water Resources Section, Delft University of Technology, the Netherlands. 6 

 7 

Abstract. Sensors and sensor networks play an important role in decision-making related to water quality, 8 

operational streamflow forecasting, flood early warning systems and other areas. Although there is a variety of 9 

evaluation and design procedures for sensor networks, most of the existing approaches focus on maximising the 10 

observability and information content of a variable of interest. Moreover, from the context of hydrological 11 

modelling, only a few studies use the performance of the hydrological simulation of discharge as design criteria. 12 

In this paper, we review the existing methodologies and propose a framework for classifying the design methods, 13 

as well as a generalised procedure for an optimal network design in the context of rainfall-runoff hydrological 14 

modelling.  15 

 16 
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1 Introduction 19 
Optimal design of sensor networks is a key procedure for improved water management as it provides information 20 

about the states of water systems. As the processes taking place in catchments are complex, and the measurements 21 

are limited, the design of sensor networks is (and has been) a relevant topic since the beginning of the International 22 

Hydrological Decade (1965 – 1974, TNO, 1986) until today (Pham and Tsai 2016). During this period, the 23 

scientific community does not seem to reach an agreement about a unified methodology for sensor network design 24 

due to the diversity of cases, criteria, assumptions, and limitations. This lack of agreement is evident from the 25 

range of existing reviews on hydrometric network design, such as those presented by WMO (1972), TNO (1986), 26 

Nemec and Askew (1986), Knapp and Marcus (2003), Pryce (2004), NRC (2004) and Mishra and Coulibaly 27 

(2009).  28 

1.1 Main principles of network design 29 

The design of a sensor network use the same concepts as experimental design (Kiefer and Wolfowitz, 1959, Fisher, 30 

1974). The design should ensure that the data is sufficient and representative, and can be used to derive the 31 

conclusions required from the measurements. (EPA, 2002). In the context of rainfall-runoff hydrological 32 

modelling, provide the sufficient data for accurate simulation and forecasting of discharge and water levels, at 33 

stations of interest. 34 

 35 

 The objectives of the sensor network design have been categorised into two groups, the optimality alphabet 36 

(Fedorov 1972, Box 1982, Fedorov and Hackl 1997, Pukelsheim 2006, Montgomery 2012), which uses different 37 
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letters to name different design criteria, and the Bayesian framework (Chaloner en Verdinelli 1995, DasGupta 38 

1996). The alphabetic design is based on the linearization of models, optimising particular criteria of the 39 

information matrix (Fedorov and Hackl 1997). Bayesian methods are centred on principles of decision making 40 

under uncertainty, in which it seeks to maximise the gain in Information (Shanon 1948) between the prior and 41 

posterior distributions of parameters, inputs or outputs (Lindley 1956, Chaloner and Verdinelli 1995). Among the 42 

most used alphabetic objectives are the D-optimal, which minimises the area of the uncertainty ellipsoids around 43 

the model parameters; and G-optimal, which minimises the variance of the predicted variable. These alphabetic 44 

design criteria can also be used in a Bayesian framework. 45 

 46 

These general objectives are indirectly addressed in the literature of optimisation of hydrometric sensor networks, 47 

achieved by the use of several functional alternatives. These approaches do not consider block experimental design 48 

(Kirk 2009), due to the incapacity to replicate initial conditions in a non-controlled environment, such as natural 49 

processes. 50 

 51 

On the practical end, the design of a sensor network should start with the institutional setup, purposes, objectives 52 

and priorities of the network (Loucks, et al. 2005, WMO 2008b). From the technical point of view, the optimal 53 

measurement strategy requires the identification of the process, for which data is required (Casman, et al. 1988). 54 

Considering that neither the information objectives are unique and consistent, nor the characterisation of the 55 

processes is complete, the re-evaluation of the sensor network design should occur on a regular basis. 56 

 57 

The design of meteorological and hydrometric sensor networks should consider at least three aspects. First, it 58 

should meet various objectives that are sometimes conflicting (Loucks, et al. 2005, Kollat, et al. 2011). Second, it 59 

should be robust under the events of failure of one or more measurement stations (Kotecha, et al. 2008). Third, it 60 

must take into account different purposes and users with different temporal and spatial scales (Singh, et al. 1986). 61 

Therefore, the design of an optimal sensor network is a multi-objective problem (Alfonso, et al. 2010) 62 

 63 

1.2 Scenarios for sensor network design: Augmentation, relocation and reduction 64 

Scenarios for designing of sensor networks may be categorised into three groups: augmentation, relocation and 65 

reduction (NRC 2004, Mishra and Coulibaly 2009, Barca, et al. 2015). Augmentation refers to the deployment of 66 

at least one additional sensor in the network, whereas Reduction refers to the opposite case, where at least one 67 

sensor is removed from the original network. Relocation is about repositioning the existing network nodes. 68 

 69 

The lack of data usually drives the sensor network augmentation, whereas economic limitations usually push for 70 

reduction. These costs of the sensor network usually relate to the deployment of physical sensors in the field, 71 

transmission, maintenance and continuous validation of data (WMO 2008). 72 

 73 

Augmentation and relocation problems are fundamentally similar, as they require the simulation of the measured 74 

variable at ungauged locations. For this purpose, statistical models of the measured variable are often employed. 75 

For example, Rodriguez-Iturbe and Mejia (1974) described rainfall regarding its correlation structure in time and 76 
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space; Pardo-Igúzquiza (1998) expressed areal averages of rainfall events with ordinary Kriging estimation; 77 

Chacón-Hurtado et al. (2009) represented rainfall fields using block Kriging. In contrast, for network reduction, 78 

the analysis is driven by what-if scenarios, as the measurements become available. Dong et al. (2005) employ this 79 

approach to re-evaluated the efficiency of a river basin network based on the results of hydrological modelling. 80 

  81 

In principle, augmentation and relocation aim to increase the performance of the network (Pardo-Igúzquiza 1998, 82 

Nowak et al. 2010). In reduction, on the contrary, network performance is usually decreased. The driver for these 83 

decisions is usually related to factors, such as operation and maintenance costs (Moss et al. 1982, Dong et al. 84 

2005). 85 

1.3 Rainfall-runoff modelling 86 

The typical data flow for hydrological rainfall-runoff modelling is presented in Fig. 1. For discharge simulation, 87 

precipitation and evapotranspiration are the most common data requirements (WMO 2008, Solomatine and 88 

Wagener 2011), while discharge data is commonly employed for model calibration, correction and update (Sun, 89 

et al. 2015). Data-driven hydrological models may use measured discharge as input variables as well (e.g., 90 

Solomatine and Xue 2004, Shrestha and Solomatine 2006). Model updating of hydrological models has been 91 

widely used in discharge forecasting as data assimilation, to update the model states by using the model error, thus 92 

providing more accurate estimates of discharge (Liu, et al. 2012, Lahoz and Schneider 2014). In real-time error 93 

correction schemes, typically, a data-driven model of the error is employed which may require as input any of the 94 

mentioned variables (Xiong and O'Connor 2002, Solomatine and Ostfeld 2008). 95 

 96 

In a conceptual way, we can express the quantification of discharge at a given station as: 97 

 98 

 

 
𝑄 = 𝑄̂(𝑥, 𝜃) + 𝜀 ( 1) 

 99 

Where Q is the discharge, Q̂ (x,θ) represents a hydrological model, which is function of measured variables (mainly 100 

precipitation and discharge, x) and the model parameters (θ). ε is the simulation error, which is ideally independent 101 

of the model, but in practice is conditioned by it. Considering that neither the measurements are perfect, or the 102 

model unbiased, the variance of the estimates are given by: 103 

 104 

 

 
𝜎2 ( 𝑄̂(𝑥, 𝜃)) 𝛼 𝜎2(𝑥), 𝜎2(𝜃) ( 2) 

 105 

This paper presents a review of methods for optimal design and evaluation of precipitation and discharge sensor 106 

networks, proposes a framework for classifying the design methods, and suggests a generalised framework for 107 

optimal network design for hydrological modelling. It is possible to extend this framework to other variables in 108 

the hydrological cycle, as optimal sensor location problems are analogous. This review does not consider in-situ 109 

installation requirements or recommendations, so the reader is referred to WMO (2008a) for the relevant, and 110 

widely accepted guidelines. 111 
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 112 

The structure of this paper is as follows: first, a classification of sensor network design approaches according to 113 

the explicit use of measurements and models is presented, including a review of existing studies. Next, the second 114 

way of classification is suggested, which are based on the classes of methods for sensor network analysis, including 115 

statistics, Information Theory, expert recommendations and others. Then, based on the reviewed literature, an 116 

aggregation of approaches and classes is shown, identifying potential opportunities for improvement. Finally, a 117 

general procedure for the optimal design of sensor networks is proposed, followed by conclusions and 118 

recommendations. 119 

2 Classification of approaches for sensor network evaluation 120 
There is a variety of approaches for the evaluation of sensor networks, ranging from pragmatic to theoretical. In 121 

this section, we provide a general classification of these approaches, and more details of each method are given in 122 

the next section. 123 

 124 

Although most of the approaches for the design of sensor networks make use of data, some rely solely on 125 

experience and recommendations. Therefore, a first tier in the proposed classification consists of recognising both 126 

measurement-based and measurement-free approaches (Fig. 2). The former make use of the measured data to 127 

evaluate the performance of the network (Tarboton et al. 1987, Anctil, et al. 2006), while the latter use other data 128 

sources (Moss and Tasker 1991), such as topography and land use.  129 

2.1 Measurement-based evaluation 130 

The measurement-based approach can be furtherly subdivided into model-free and model-based approaches 131 

(Fig. 2), depending on the use of hydrological model results in the performance metric.  132 

2.1.1 Model-free performance evaluation 133 

In model-free approaches, water systems and the external processes that drive their behaviour are observed through 134 

existing measurements, without the use of catchment models. Then, metrics about amount and quality of 135 

information in space and time are evaluated with regards to the management objectives and the decisions to be 136 

made in the system. Some performance metrics in this category are Joint Entropy (Krstanovic and Singh 1992), 137 

Information Transfer (Yang and Burn 1994), interpolation variance (Pardo-Igúzquiza 1998, Cheng et al. 2007) 138 

and autocorrelation (Moss and Karlinger 1974), among others. Fig. 3 presents the flowchart for the case when 139 

precipitation and discharge, as main drivers of catchment hydrology (WMO 2008) are considered, in model-free 140 

network evaluation. 141 

 142 

Fundamentally, the model-free approach aims to minimise the variance of the measured variable, therefore, (and 143 

in theory) minimising the variance in the estimation (equation 3). However, a design that is optimal for estimation 144 

is not necessarily also optimal for prediction (Chaloner and Verdinelli 1995). 145 

 146 

 

 
min 𝜎2 (𝑄̂(𝑥, 𝜃))  𝛼 min(𝜎2(𝑥)) ( 3) 
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 147 

Application of model-free approaches can be found in Krstanovic and Singh (1992), Nowak et al. (2010), Li et al. 148 

(2012). Model-free evaluations are suitable for sensor network design aiming mainly at water resources planning, 149 

in which diverse water interests must be balanced. Due to the lack of a quantitative performance metric that relates 150 

simulated discharge, this kind of evaluations do not necessarily improve rainfall-runoff simulations.  151 

2.1.2 Model-based performance evaluation 152 

In the model-based approach, the performance of sensor networks is carried out using a catchment model (Dong 153 

et al. 2005, Xu et al. 2013), In this case, measurements of precipitation are used to simulate discharge, which is 154 

compared to the discharge measurements at specific locations. Therefore, any metric of the modelling error could 155 

be used to evaluate the performance of the network. Fig. 4 presents a generic model-based approach for evaluating 156 

sensor networks. 157 

 158 

In the model-based design of sensor networks, it is assumed that the model structure and parameters are adequate. 159 

Therefore, it is possible to identify a set of measurements (x) which minimise the modelling error as. 160 

 161 

 

 
min 𝜎2(𝜖)  𝛼 min(|𝑄 − 𝑄̂(𝑥, 𝜃)|) ( 4) 

 162 

The need for the catchment model and possible high computational efforts for multiple model runs are some 163 

disadvantages of this approach. The computational load is especially critical in case of complex distributed models. 164 

It is worth mentioning particular model error metrics (Nash and Sutcliffe 1970, Gupta, et al. 2009) may qualify 165 

the network by its ability to capture certain hydrological processes (Bennet, et al. 2013), affecting the network 166 

evaluation.  167 

2.2 Measurement-free evaluation methods  168 

As it is seen from its name, this approach does not require the previous collection of data of the measured variable 169 

to evaluate the sensor network performance. The evaluation of sensor networks is based on either experience or 170 

physical characteristics of the area such as land use, slope or geology. In this group of methods, the following can 171 

be mentioned: expert recommendations (Bleasdale 1965, Wahl and Crippen 1984, Karasseff 1986, WMO 2008a) 172 

and physiographic components (Tasker 1986, Laize 2004). This approach is the first step towards any sensor 173 

network development (Bleasdale 1965, Moss, Gilroy, et al. 1982, Nemec and Askew 1986, Karasseff 1986).  174 

3 Classification of methods for sensor network evaluation 175 
In this section, we classify the methods used to quantify the performance of the sensor networks based on the type 176 

of the mathematical tools used. These methods can be broadly categorised in statistics-based, information theory-177 

based, methods based on expert recommendations and others.  178 
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3.1 Statistics-based methods 179 

Statistics-based methods refer to methods where the performance of the network is evaluated with statistical 180 

uncertainty metrics of the measured or simulated variable. These methods aim at minimising either interpolation 181 

variance (Rodriguez-Iturbe and Mejia 1974, Bastin et al. 1984, Bastin and Gevers 1985, Bogárdi et al. 1985), 182 

cross-correlation (Maddock 1974, Moss and Karlinger 1974, Tasker 1986), or model error (Dong et al. 2005, Xu 183 

et al. 2015).  184 

3.1.1 Minimum interpolation variance (geostatistical) methods. 185 

Methods to evaluate sensor networks considering a reduction in the interpolation variance assume that for a 186 

network to be optimal, the measured variable should be as certain as possible in the domain of the problem. To 187 

achieve this, a stochastic interpolation model that provides uncertainty metrics is required. Geostatistical methods 188 

such as Kriging (Journel and Huijbregts 1978, Cressie 1993), or Copula interpolation (Bárdossy 2006) have an 189 

explicit estimation of the interpolation error. This characteristic makes it suitable to identify areas with expected 190 

poor interpolation results, (Bastin, et al. 1984, Pardo-Igúzquiza 1998, Grimes et al. 1999, Cheng et al. 2007, Nowak 191 

et al. 2009, Nowak et al. 2010, Shafiei, et al. 2013). 192 

 193 

In the case of Kriging, the optimal estimation of a variable at ungauged locations is assumed to be a linear 194 

combination of the measurements, with a Gaussian distributed probability distribution function. Under the ordinary 195 

Kriging formulation, the variance in the estimation σ2(X̂) of a variable at location (t) is: 196 

 197 

 

 
𝜎2(𝑋̂𝑡) = 𝐶0 − ∑ 𝜆𝛼(𝑡)𝐶(𝛼 − 𝑡)

𝐴

𝛼=1

 ( 5) 

 198 

Where C0 refers to the variance of the random field, λα are the Kriging weights for the station α at the ungauged 199 

location t. 𝐶(𝛼 − 𝑡) is the covariance between the station α and the interpolation target at the location t. A 200 

represents the total number of stations in the neighbourhood of t used in the interpolation. 201 

 202 

Therefore, as an objective function the optimal sensor network is such that: 203 

 204 

 

 
min ∑ 𝜎2(𝑋̂𝑡)

Ω

𝑡=1

 ( 6) 

 205 

Where Ω is the total number of discrete interpolation targets in the catchment or domain of the problem. 206 

 207 

Bastin and Gevers (1984) optimised a precipitation sensor network at pre-defined locations to estimate the average 208 

precipitation for a given catchment. Their selection of the optimal sensor location consisted of minimising the 209 

normalised uncertainty by reducing the network. The main drawback of their approach is that the network can only 210 

be reduced and not augmented. Similar approaches have also been used by Rodriguez-Iturbe and Mejia (1974), 211 

Bárdossy and Bogárdi (1983), Bogárdi et al. 1985, Morrissey et al. (1995) and Bonaccorso et al. (2003). Pardo-212 
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Igúzquiza (1998) advanced this formulation by removing the pre-defined set of locations (allowing augmentation). 213 

Instead, rain gauges were allowed to be placed anywhere in the catchment and its surroundings. A simulated 214 

annealing algorithm is used to search for the find the optimal set of sensors to minimise the interpolation 215 

uncertainty. 216 

 217 

Copula interpolation is a geostatistical alternative to Kriging for the modelling of spatially distributed processes 218 

(Bárdossy 2006, Bárdossy and Li 2008, Bárdossy and Pegram 2009). As a geostatistical model, the copula provides 219 

metrics of the interpolation uncertainty, considering not only the location of the stations and the model 220 

parameterisation but also the value of the observations. Li et al. (2011) use the concept of copula to provide a 221 

framework for the design of a monitoring network for groundwater parameter estimation, using a utility function, 222 

related to the cost of a given decision with the available information. 223 

 224 

In the case of the Copula, the full conditional probability distribution function of the variable is interpolated. As 225 

such, the interpolation uncertainty depends on the confidence interval, measured values, parameterisation of the 226 

copula and the relative position of the sensors in the domain of the catchment. More details on the formulation of 227 

the copula-based design can be found in Bárdossy and Li (2008). 228 

 229 

Cheng et al. (2007), as well as Shafiei et al. (2013), recognised that the temporal resolution of the measurements 230 

affects the definition of optimality in minimum interpolation variance methods. This change in the spatial 231 

correlation structure occurs due to more correlated precipitation data between stations in coarser sampling 232 

resolutions (Ciach and Krajewski 2006). For this purpose, the sensor network has to be split into two parts, a base 233 

network and non-base sensors. The former should remain in the same position for long periods, to characterise 234 

longer fluctuation phenomena, based on the definition of a minimum threshold for an area with acceptable 235 

accuracy. The latter is relocated to improve the accuracy of the whole system, and should be relocated as they do 236 

not provide a significant contribution to the monitoring objective. 237 

 238 

Recent efforts have used minimum interpolation variance approaches to consider the non-stationarity assumption 239 

of most geostatistical applications in sensor network design (Chacon-Hurtado et al. 2014). To this end, changes in 240 

the precipitation pattern and its effect on the uncertainty estimation were considered during the development of a 241 

rainfall event.  242 

3.1.2 Minimum cross-correlation methods 243 

The objective of minimum cross-correlation methods is to avoid placing sensors at sites that may produce 244 

redundant information. Cross-correlation was suggested by Maddock (1974) for sensor network reduction, as a 245 

way to identify redundant sensors. In this scope, the objective function can be written as: 246 

 247 

 

 
min ∑ ∑

𝑐𝑜𝑣(𝑥𝑖 , 𝑥𝑗)

𝜎(𝑥𝑖)𝜎(𝑥𝑗)

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

  ( 7) 

 248 
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Where cov is the covariance function between a pair of stations (i, j), and σ is the standard deviation of the 249 

observations. 250 

 251 

Stedinger and Tasker (1985) introduced the method Network Analysis Using Generalized Least Squares 252 

(NAUGLS), which assesses the parameters of a regression model for daily discharge simulation based on the 253 

physiographic characteristics of a catchment (Stedinger and Tasker 1985, Tasker 1986, Moss and Tasker 1991). 254 

The method builds a Generalised-Least-Square (GLS) covariance matrix of regression errors to correlate flow 255 

records and to consider flow records of different length, so the sampling mean squared error can be expressed as: 256 

 257 

 min
1

𝑛
∑ 𝑋𝑖

𝑇(𝑋𝑇Λ−1 𝑋)−1𝑋𝑖

𝑗

𝑖=1

 ( 8) 

 258 

Where X [k, w] is the matrix of the (k) basin characteristics in a window of size w at discharge measuring site i. Λ 259 

is the GLS Weighting matrix, using a set of n gauges (Tasker 1986) 260 

 261 

A comparable method was proposed by Burn and Goulter (1991), who used a correlation metric to cluster similar 262 

stations. Vivekanandan and Jagtap (2012) proposed an alternative for the location of discharge sensors in a 263 

recurrent approach, in which the most redundant stations were removed, and the most informative stations 264 

remained using the Cooks D metrics, a measure of how the spatial regression model at a particular site is affected 265 

by removing another station. The result of these type of sensors is sparse, as the redundancy of two sensors 266 

increases with the inverse of the distance between them (Mishra and Coulibaly 2009). 267 

3.1.3 Minimum model output error methods 268 

These methods assume that the optimal sensor network configuration is such that satisfy a particular modelling 269 

purpose, e.g. a minimum error in simulated discharge. Considering this, the design of a sensor network should be 270 

such that: 271 

 272 

 

 
min 𝑓(|𝑄 − 𝑄̂(𝑥, 𝜃)|)  ( 9) 

 273 

Where f is a metric that summarises the vector error such as Bias, Root Mean Squared Error (RMSE), or Nash-274 

Sutcliffe Efficiency (NSE); Q is the measurements of the simulated variable, and Q̂ is the simulation results for 275 

inputs x, and parameters θ. Bias measures the deviation of the mean results between the observations (Q) and 276 

simulation results (Q̂) for n pairs of observations and simulation results: 277 

 278 

 

 
𝐵𝑖𝑎𝑠 =

1

𝑛
∑(𝑄̂𝑖 − 𝑄𝑖)

𝑛

𝑖=1

 
( 

10) 

 279 

This metric theoretically varies from minus infinity to infinity, and its optimal value is equal to zero. The root 280 

mean square error (RMSE) measures the standard deviation of the residuals as: 281 
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 282 

 

 
𝑅𝑀𝑆𝐸 = √

1

𝑛
∑(𝑄̂𝑖 − 𝑄𝑖)

2
𝑛

𝑖=1

 ( 11) 

 283 

The RMSE can vary then from zero to infinity, where zero represents a perfect fit between model results and 284 

observations. As RMSE is a statistical moment of the residuals, the result is a magnitude rather than a score. 285 

Therefore, benchmarking between different case studies is not trivial. To overcome this issue, Nash and Sutcliffe 286 

(1970) proposed a score (also known as coefficient of determination) based on the ratio of the variance of the 287 

model residuals over the observation variance as: 288 

 289 

 

 
𝑁𝑆𝐸 = 1 −

∑ (𝑄̂𝑖 − 𝑄𝑖)
2𝑛

𝑖=1

∑ (𝑄𝑖 − 𝑄̅𝑖)
2𝑛

𝑖=1

 ( 12) 

 290 

In which Q are the measurements, Q̂ are the model results and Q̅ is the average of the recorded series. 291 

 292 

Theoretically, this score varies from minus infinity to one. However, its practical range lies between zero and one. 293 

On the one hand, an NSE equal to zero indicates that the model has the same explanatory capabilities that the mean 294 

of the observations. On the other end, a value of one represents a perfect fit between model results and observations. 295 

Model output error formulations have been used to identify the most convenient set of sensors that provide the 296 

best model performance (Tarboton et al. 1987) to propose measurement strategies regarding the number of gauges 297 

and sampling frequency. 298 

 299 

Another application is provided by Dong et al. (2005) who proposed to evaluate the rainfall network using a 300 

lumped HBV model. They found that the model performance does not necessarily improve when extra rain gauges 301 

are placed. A similar approach was presented by Xu et al. (2013) who evaluated the effect of diverse rain gauge 302 

locations on runoff simulation using a similar hydrological model. It was found that rain gauge locations could 303 

have a significant impact and suggest that a gauge density less than 0.4 stations per 1000 km2 can negatively affect 304 

the model performance. 305 

 306 

Anctil et al. (2006) aimed at improving lumped neural network rainfall-runoff forecasting models through mean 307 

areal rainfall optimisation, and concluded that different combinations of sensors lead to noticeable streamflow 308 

forecasting improvements. Studies in other fields have also used this method. For example, Melles et al. (2009, 309 

2011), obtained optimal monitoring designs for radiation monitoring networks, which minimise the prediction 310 

error of mean annual background radiation. The main drawback of this approach is that multiple error metrics are 311 

considered, as specific objectives relate to different processes 312 

 313 
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3.2 Information Theory-based methods 314 

Information Theory (Shanon 1948) provides the possibility of estimating probability distribution functions in the 315 

presence of partial information with the less biassed estimation (Jaynes 1957). Some of its concepts are analogous 316 

to statistics concepts, and therefore similarities between Entropy and uncertainty, mutual information and 317 

correlation (Alfonso 2010). Information Theory-based methods for designing sensor networks mainly consider the 318 

maximisation of information content that sensors can provide, in combination with the minimisation of redundancy 319 

among them (Krstanovic and Singh 1992, Mogheir and Singh 2002, Alfonso et al. 2010, Alfonso 2010, Alfonso, 320 

et al. 2013,  Singh 2013). Redundancy can be measured by using either Mutual Information (Singh 2000, Steuer, 321 

et al. 2002), Directional Information Transfer (Yang and Burn 1994), Total Correlation (Alfonso et al. 2009, 2010, 322 

Fahle, et al. 2015), among others.  323 

3.2.1 Maximum Entropy methods 324 

The Principle of Maximum Entropy (POME) is based on the premise that probability distribution with the largest 325 

remaining uncertainty (i.e., the maximum Entropy) is the one that best represent the current stage of knowledge. 326 

POME has been used as a criterion for the design of sensor networks, by allowing the identification of the set of 327 

sensors that maximises the joint Entropy among measurements (Krstanovic and Singh 1992). In other words, to 328 

provide as much information, from the Information Theory perspective, as possible (Jaynes 1988).  329 

 330 

As an objective function, the maximisation of the joint entropy of the measurements is given by: 331 

 332 

 max 𝐻(𝑋1, 𝑋2, … , 𝑋𝑛) = max − ∑ … ∑ 𝑝(𝑥𝑖1, … 𝑥𝑗𝑚) log 𝑝(𝑥𝑖1, … 𝑥𝑗𝑚)

𝑛

𝑗=1

𝑚

𝑖=1

 ( 13) 

 333 

Where p(X) is the probability of the variable X to take the discrete value xm. As in many applications, xm is a 334 

continuous value; the variable X has to be discretised into intervals before the calculation of the (Joint) Entropy. 335 

 336 

Krstanovich and Singh (1992) presented a concise work on rainfall network evaluation using Entropy. They used 337 

POME to obtain multivariate distributions to associate different dependencies between sensors, such as joint 338 

information and shared information, which was used later either reduce the network (in the case of high 339 

redundancy) or expand it (in the case of lack of common information). 340 

 341 

Fuentes et al. (2007) proposed an Entropy-utility criterion for environmental sampling, particularly suited for air-342 

pollution monitoring. This approach considers Bayesian optimal sub-networks using an Entropy framework, 343 

relying on the spatial correlation model. An interesting contribution of this work is the assumption of non-344 

stationarity, contrary to traditional atmospheric studies, and relevant in the design of precipitation sensor networks. 345 

 346 

The use of hydraulic 1D models and metrics of Entropy have been used to select the adequate spacing between 347 

sensors for water level in canals and polder systems (Alfonso et al. 2014). This approach is based on the current 348 

conditions of the system, which makes it useful for operational purposes, but it does not necessarily support the 349 

modifications in the water system conditions or changes in the operation rules. Studies on the design of sensor 350 
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networks using these methods are on the rise in the last years (Alfonso 2010, Alfonso et al. 2013, Ridolfi et al. 351 

(2013). 352 

 353 

Benefits of POME include the robustness of the description of the posterior probability distribution since it aims 354 

to define the less biassed outcome. This is because neither the models nor the measurements are completely certain. 355 

Li et al. (2012) presented, as part of a multi-objective framework for sensor network optimisation, the criteria of 356 

maximum (Joint) Entropy, as one of the objectives. Other studies in this direction have been presented by Lindley 357 

(1956), Caselton and Zidek (1984), Guttorp et al. (1993), Zidek et al. (2000) and Kang et al. (2014).  358 

 359 

More recently, Samuel et al. (2013) and Coulibaly and Samuel (2014), proposed a mixed method involving 360 

regionalisation and dual Entropy multi-objective optimisation (CRDEMO). This method is a step forward if 361 

compared to single-objective optimisation methods for sensor network design. 362 

3.2.2 Minimum mutual information (trans-information) methods 363 

Mutual information is a measurement of the amount of information that a variable contains about another. This is 364 

measured as the relative Entropy between the joint distribution and the product distribution (Cover and Thomas 365 

2005). The design to minimise the mutual information can be expressed as: 366 

 367 

 
min 𝐼(𝑋1, 𝑋2, … , 𝑋𝑛) = min ∑ ∑

𝐻(𝑋1, 𝑋2, … , 𝑋𝑛)

𝑝(𝑥1,𝑖)𝑝(𝑥2,𝑖) … 𝑝(𝑥𝑛,𝑖)

𝑛

𝑗=1

𝑚

𝑖=1

  

 

( 14) 

Under this perspective, the optimal sensor network should be such that reduces the information shared between 368 

sensors in the network. Alternatively, that maximises the transferred information from a modelled variable to a 369 

measured variable at a point of interest (Amorocho and Espildora 1973). Following this idea, Husain (1987) 370 

suggested an optimisation scheme for the reduction of a rain sensor network. His objective was to minimise the 371 

trans-information between pairs of stations. However, assumptions of the probability and joint probability 372 

distribution functions are strong simplifications of this method. To overcome these assumptions, the Directional 373 

Information Transfer (DIT) index was introduced (Yang and Burn 1994) as the inverse of the coefficient of non-374 

transferred information (NTI) (Harmancioglu and Yevjevich 1985). Both DIT and NTI are a normalised measure 375 

of information transfer between two variables (X1 and X2).  376 

 377 

 𝐷𝐼𝑇 =
𝐼(𝑋1, 𝑋2)

𝐻(𝑋1)
 ( 15) 

 378 

Particularly for the design of precipitation sensor networks, Ridolfi et al. (2011) presented a definition of the 379 

maximum achievable information content for designing a dense network of precipitation sensors at different 380 

temporal resolutions. The results of this study show that there exists a linear dependency between the non-381 

transferred information and the sampling time of the observations. 382 

 383 
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A method to estimate trans-information fields at ungauged locations has been proposed by Su and You (2014), 384 

employing a trans-information-distance relationship. This method accounts for the spatial distribution of the 385 

precipitation, supporting the augmentation problem in the design of precipitation sensor networks. However, as 386 

the relationship between trans-information between sensors and their distance is monotonic, the resulting sensor 387 

networks are sparse. 388 

3.3 Methods based on expert recommendations  389 

3.3.1 Physiographic components methods 390 

Among the most used planning tools for hydrometric network design are the technical reports presented by the 391 

WMO (2008), in which a minimum density of stations depending on different physiographic units, are suggested 392 

(Table 1). Although these guidelines do not provide an indication about where to place hydrometric sensors, they 393 

recommend that their distribution should be as uniform as possible and that network expansion has to be 394 

considered. The document also encourages the use of computationally aided design and evaluation of a more 395 

comprehensive design. 396 

 397 

Moss et al., (1982) presented one of the first attempts to use physiographic components in the design of sensor 398 

networks in a method called Network Analysis for Regional Information (NARI). This method is based on relations 399 

of basin characteristics proposed by Benson and Matalas (1967). NARI can be used to formulate the following 400 

objectives for network design: minimum cost network, maximum information and maximum net benefit from the 401 

data-collection program, in a Bayesian framework, which can be approximated as: 402 

 403 

 min log 𝜎(𝑆(|𝑄̂ − 𝑄|)
𝛼

) = min 𝑎 + 
𝑏1

𝑛
+

𝑏2

𝑦
  ( 16) 

 404 

Where the function S(|Q̂ - Q|)α  is the α percentile of the standard error in the estimation of Q, a, b1 and b2  are the 405 

parameters from the NARI analysis, n is the number of stations used in the regional analysis, and y is the harmonic 406 

mean of the records used in the regression.  407 

 408 

Laize (2004) presented an alternative for evaluating precipitation networks based on the use of the Representative 409 

Catchment Index (RCI), a measure to estimate how representative a given station in a catchment is for a given 410 

area, on the stations in the surrounding catchments. The author argues that the method, which uses datasets of land 411 

use and elevation as physiographical components, can help identifying areas with a insufficient number of 412 

representative stations on a catchment.  413 

3.3.2 Methods based on expert judgement  414 

Most of the first sensor networks were designed based on expert judgement. Aspects such as the objective of the 415 

measurement, security and accessibility are decisive to select the location of a sensor. Nemec and Askew (1986) 416 

presented a short review of the history and development of the early sensor networks, where it is highlighted that 417 

the use of “basic pragmatic approaches” still had most of the attention, due to its practicality in the field and its 418 

closeness with decision makers. 419 
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 420 

Bleasdale (1965) presented a historical review of the early development process of the rainfall sensor networks in 421 

the United Kingdom. In the early stages of the development of precipitation sensor networks, two main 422 

characteristics influencing the location of the sensors were identified: at sites that were conventionally satisfactory 423 

and where good observers were located. However, the necessity of a more structured approach to select the location 424 

of sensors was underlined. As a guide, Bleasdale (1965) presented a series of recommendations on the minimal 425 

density of sensors for operational purposes, summarised in Fig. 5, relating the characteristics of the area to be 426 

monitored and the minimum required number of precipitation sensors, as well as its temporal resolution. 427 

 428 

In a more structured approach, Karasseff (1986) introduced some guidelines for the definition of the optimal sensor 429 

network to measure hydrological variables for operational hydrological forecasting systems. The study specified 430 

the minimum requirements for the density of measurement stations based on the fluctuation scale and the 431 

variability of the measured variable by defining zonal representative areas. He suggested the following 432 

considerations for selecting the optimal placement of hydrometric stations: 433 

 434 

 in the lower part of inflow and wastewater canals 435 

 at the heads of irrigation and watering canals taking water from the sources 436 

 at the beginning of a debris cone before the zone of infiltration, and at its end, where ground-water 437 

decrement takes place 438 

 at the boundaries of irrigated areas and zones of considerable industrial water diversions (towns) 439 

 at the sites of hydroelectric power plants and hydro projects 440 

 441 

From a different perspective, Wahl and Crippen (1984), as well as Mades and Oberg (1986) proposed a qualitative 442 

score assessment of different factors related to the use of data and the historical availability of records for the 443 

evaluation of sensor value. Their analyses aimed at identifying candidate sensors to be discontinued, due to their 444 

limited accuracy. 445 

3.3.3 User survey methods 446 

These approaches aim to identify the information needs of particular groups of users (Sieber 1970), following the 447 

idea that the location of a certain sensor (or group of sensors) should satisfy at least one specific purpose. To this 448 

end, surveys to identify the interests for the measurement of certain variables, considering the location of the 449 

sensor, record length, frequency of the records, methods of transmission, among others, are executed.  450 

 451 

Singh et al., (1986) applied two questionnaires to evaluate the streamflow network in Illinois. One to identify the 452 

main uses of streamflow data collected at gauging stations, where participants described how data was used, and 453 

how they would categorise it in a) site-specific management activities, local or regional planning and design, or b) 454 

determination of long-term trends. The second questionnaire was used to determine present and future needs for 455 

streamflow information. The results showed that the network was reduced due to the limited interest about certain 456 
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data, which allowed for enhancing the existing network using more sophisticated sensors or recording methods. 457 

Additionally, this redirection of resources increased the coverage at locations of high interest. 458 

3.4 Other methods 459 

There are also other methods that cannot be easily attributed to the previously mentioned categories. Among them, 460 

Value of Information, fractal, and network theory-based methods can be mentioned. 461 

3.4.1 Value of Information Methods 462 

The Value of Information (VOI, Howard 1966, 1986) is defined as the value a decision-maker is willing to pay for 463 

extra information before making a decision. This willingness to pay is related to the reduction of uncertainty about 464 

the consequences of making a wrong decision (Alfonso and Price 2012).  465 

 466 

The main attribute of this approach is the direct description of the benefits of certain the additional information, 467 

compared with the costs of acquiring that extra piece of information (Black et al. 1999, Walker 2000, Nguyen and 468 

Bagajewicz 2011, Alfonso and Price 2012, Ballari et al. 2012). The main advantage of this method is that provides 469 

a pragmatic framework in which information have a utilitarian value, usually economic, which is especially suited 470 

for budget constraint conditions.   471 

 472 

One of the assumptions of this type of models is that a prior estimation of consequences is needed. If a is the action 473 

that has been decided to perform, m is the additional information that comes to make such a decision, and s is the 474 

state that is actually observed, then the expected utility of any action a can be expressed as:  475 

 476 

 𝑢(𝑎, 𝑃𝑠) = ∑ 𝑃𝑠𝑢(𝐶𝑎𝑠)

𝑆

 ( 17) 

 477 

Where Ps is the perception, in probabilistic terms, of the occurrence of a particular state (s) among a total number 478 

of possible states (S), and u is the utility of the outcome Cas of the actions given the different states. When new 479 

information (i.e., a message m) becomes available, and the decision-maker accepts it, his prior belief Ps will suffer 480 

a Bayesian update. If P (m|s) is the likelihood of receiving the message m given the state s and Pm is the probability 481 

of getting a message m then: 482 

 483 

 𝑃𝑚 = ∑ 𝑃𝑠𝑃(𝑚|𝑠)

𝑆

 ( 18) 

 484 

The value of a single message m can be estimated as the difference between the utility, u, of the action, am that is 485 

chosen given a particular message m  and the utility of the action, a0,  that would have been chosen without 486 

additional information as:  487 

 488 

 ∆𝑚= 𝑢(𝑎𝑚 , 𝑃(𝑠|𝑚)) − 𝑢(𝑎0, 𝑃(𝑠|𝑚)) ( 19) 

 489 
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The Value of Information, VOI, is the expected utility of the values m:  490 

 491 

 𝑉𝑂𝐼 = 𝐸(∆𝑚) = ∑ 𝑃𝑚∆𝑚

𝑀

 ( 20) 

 492 

Following the same line of ideas, Khader et al. (2013) proposed the use of decision trees to account for the 493 

development of a sensor network for water quality in drinking groundwater applications. VOI is a straightforward 494 

methodology to establish present causes and consequences of scenarios with different types of actions, including 495 

the expected effect of additional information.  496 

 497 

A recent effort by Alfonso et al. (2016) towards identifying valuable areas to get information for floodplain 498 

planning consists of the generation of VOI maps, where probabilistic flood maps and the consequences of 499 

urbanisation actions are taken into account to identify areas where extra information. 500 

3.4.2 Fractal-based methods 501 

Fractal-based methods employ the concept of Gaussian self-affinity, where sensor networks show the same spatial 502 

patterns at different scales. This affinity can be measured by its fractal dimension (Mandelbrot 2001). Lovejoy et 503 

al., (1986) proposed the use of fractal-based methods to measure the dimensional deficit between the observations 504 

of a process and its real domain. Consider a set of evenly distributed cells representing the physical space, and the 505 

fractal dimension of the network representing the number of observed cells in the correlation space. The lack of 506 

non-measured cells in the correlation space is known as the fractal deficit of the network.  507 

 508 

Lovejoy and Mandelbrot (1985) and Lovejoy and Schertzer (1985) introduced the use of fractals to model 509 

precipitation. They argued that the intermittent nature of the atmosphere can be characterised by fractal measures 510 

with fat-tailed probability distributions of the fluctuations, and stated that standard statistical methods are 511 

inappropriate to describe this kind of variability. Mazzarella and Tranfaglia (2000) and Cappechi et al. (2011) 512 

presented two different case studies using this method for the evaluation of a rainfall sensor networks. The former 513 

study concludes that for network augmentation, it is important to select the optimal locations that improve the 514 

coverage, measured by the reduction of the fractal deficit. However, there are no practical recommendations on 515 

how to select such locations. The latter proposes the inspection of seasonal trends as the meteorological processes 516 

of precipitation may have significant effects on the detectability capabilities of the network.  517 

 518 

A common approach for the quantification of the dimensional deficit is the box-counting method (Song et al. 2007, 519 

Kanevski 2008), mainly used in the fractal characterisation of precipitation sensor networks. The fractal dimension 520 

of the network (D) is quantified as the ratio of the logarithm of the number of blocks (NB) that have measurements 521 

and the logarithm of the scaling radius (R). 522 

 523 

 𝐷 =  
log (𝑁𝐵(𝑅))

log (𝑅)
 ( 21) 

 524 
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Due to the scarcity of measurements of precipitation type of networks, the quantification of the fractal dimension 525 

may result unstable. An alternative fractal dimension may be calculated using a correlation integral (Mazzarella & 526 

Tranfaglia, 2000): 527 

 528 

 𝐶𝐼(𝑅) =  
2

𝐵(𝐵 − 1)
∑ ∑ 𝛩(𝑅 − |𝑢𝛼𝑖 − 𝑢𝛼𝑗|)

𝐵

𝑗=1

: 𝑓𝑜𝑟 𝑖 ≠ 𝑗

𝐵

𝑖=1

 ( 22) 

 529 

In which CI is the correlation integral, R is the scaling radius, B is the total number of blocks at each scaling radius, 530 

and Uα is the location of station α. Θ is the heavy side function. A normalisation coefficient is used, as the number 531 

of estimations of the counting of blocks considers each station as a centre. 532 

 533 

The consequent definition of the fractal dimension of the network is the rate between the logarithm of the 534 

correlation integral and the logarithm of the scaling radius. This ratio is calculated from a regression between 535 

different values of R, for which the network exhibit fractal behaviour (meaning, a high correlation between log(CI) 536 

and log(R)). 537 

 538 

 𝐷 =  
log (𝐶𝐼)

log (𝑅)
 ( 23) 

 539 

The Maximum potential value for the fractal dimension of a 2-D network (such as for spatially distributed 540 

variables) is two. However, this limit considers that the stations are located on a surface, as elevation is a 541 

consequence of the topography, and not on the network deployment. 542 

3.4.3 Network theory-based methods 543 

Recently, research efforts have been devoted to the use of the so-called network theory to assess the performance 544 

of discharge sensor networks (Sivakumar and Woldemeskel 2014, Halverson and Fleming 2015). These studies 545 

analyse three main features, namely average clustering coefficient, average path length and degree distribution. 546 

Average clustering is a degree of the tendency of stations to form clusters. Average path length is the average of 547 

the shortest paths between every combination of station pairs. Degree distribution is the probability distribution of 548 

network degrees across all the stations, being network degree defined as the number of stations to which a station 549 

is connected. Halverson and Fleming (2015) observed that regular streamflow networks are highly clustered (so 550 

the removal of any randomly chosen node has little impact on the network performance) and have long average 551 

path lengths (so information may not easily be propagated across the network).  552 

 553 

In hydrometric networks, three metrics are identified (Halverson and Fleming, 2015): degree distribution, 554 

clustering coefficient and average path length. The first of these measures is the average node degree, which 555 

corresponds to the probability of a node to be connected to other nodes. The metric is calculated in the adjacency 556 

matrix (a binary matrix in which connected nodes are represented by 1 and the missing links by 0). Therefore, the 557 

degree of the node is defined as: 558 

 559 
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 𝑘(𝛼) = ∑ 𝑎𝛼,𝑗

𝑛

𝑗=1

 ( 24) 

 560 

Where k(α) is the degree of station α, n is the total number of stations, and a is the adjacency matrix. 561 

 562 

The clustering coefficient is a measure of how much the nodes cluster together. High clustering indicates that 563 

nodes are highly interconnected. The clustering coefficient (CC) for a given station is defined as: 564 

 565 

 𝐶𝐶(𝛼) =  
2

𝑘(𝛼)(𝑘(α) − 1)
∑ 𝑎𝛼,𝑗

𝑛

𝑗=1

 ( 25) 

 566 

Additionally, the average path length refers to the mean distance of the interconnected nodes. The length of the 567 

connections in the network, provide some insights in the length of the relationships between the nodes in the 568 

network. 569 

 570 

 𝐿 =  
1

𝑛(𝑛 − 1)
∑ ∑ 𝑑𝛼,𝑗

𝑛

𝑗=1

𝑘(𝛼)

𝛼=1

 ( 26) 

 571 

As can be seen from the formulation, the metrics of the network largely depends on the definition of the network 572 

topology (adjacency matrix). The links are defined from a metric of statistical similitude such as the Pearson r or 573 

the Spearman rank coefficient. The links are such pair of stations over which statistical similitude is over a certain 574 

threshold. 575 

 576 

According to Halverson and Fleming (2015), an optimal configuration of streamflow networks should consist of 577 

measurements with small membership communities, high betweenness, and index stations with large numbers of 578 

intracommunity-links. Small communities represent clusters of observations, thus, indicating efficient 579 

measurements. Large numbers of intra-community links ensure that the network has some degree of redundancy, 580 

and thus, resistant to sensor failure. High betweenness indicates that such stations which have the most inter-581 

communal links are adequately connected, and thus, able to capture the heterogeneity of the hydrological processes 582 

at a larger scale. 583 

4 Aggregation of approaches and classes 584 
Table 2 summarises the sensor network design classes and approaches. The crosses indicate the existence of studies 585 

that, as far as the authors are aware of, are present in each category. 586 

 587 

It is of special interest in the review to highlight the lack of model-based information theory methods, as well as 588 

the little amount of publications in network theory-based methods. Also, quantitative studies in the comparison of 589 

different methodologies for the design of sensor networks are limited. It is suggested, therefore, that a pilot 590 
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catchment is used for the scientific community to test all the available methods for network evaluation, establish 591 

similarities and differences among them. 592 

5 General procedure for sensor network design 593 
Based on the literature review, a procedure for the design of sensors networks, following the measurement-based 594 

approaches is proposed (Fig. 6). The flowchart suggests two main loops: one to measure the network performance 595 

(optimisation loop), and other to represent the iterations required in either augmentation or reduction scenarios. 596 

Most of the measurement-based methods, as well as most design scenarios, can follow this flowchart.  597 

 598 

The general procedure consists of 11 steps (boxes in Fig. 6). In the first place, physical measurements (1) are 599 

acquired by the sensor network. This data is used to parameterise an estimator (2), which will be used to estimate 600 

the variable at the Candidate Measurement Locations (CML) using, for instance, Kriging (Pardo-Igúzquiza 1998, 601 

Nowak et al, 2009), or 1D hydrodynamic models (Neal et al, 2012, Rafiee 2012, Mazzoleni et al, 2015). The sensor 602 

network reduction does not require such estimator as measurements are already in place.  603 

 604 

The selection of the CML should consider factors such as physical and technical availability, as well as costs 605 

related to maintenance and accessibility of stations, as illustrated by the WMO (2008) recommendations. These 606 

limitations may be a model as constraints in the optimisation problem. 607 

 608 

Then an optimisation loop starts (Fig. 6), with the selection of CML (based, for example, on expert judgement). 609 

Then, the estimator in (2) simulates the measured variable at the CML (3). Next, the performance of the sensor 610 

network at the CML is evaluated (4), using any of the previously discussed methods. The selection of the method 611 

depends on the designer and its information requirements, which also determines if an optimal solution is found 612 

(5). The stopping criteria in the optimisation problem can be set by the desired accuracy of the network, some non-613 

improving solutions or a maximum number of iterations. As pointed out in the review, these performance metrics 614 

can be either model-based or model-free and should not be confused with the use of a (geostatistical) model of the 615 

measured variable. 616 

 617 

In case the optimisation loop is not complete, a new set of CML is selected (6). The use of optimisation algorithms 618 

may drive the search of the new potential CML (Pardo-Igúzquiza 1998, Kollat et al. 2008, Alfonso 2010, Kollat 619 

et al. 2011). The decision about adequate performance should not only consider the expected performance of the 620 

network but also, recognise the effect of a limited number of sensors. 621 

 622 

Once the performance is optimal, an iteration over the number of sensors is required. If the scenario is for network 623 

augmentation (7), then a possibility of including additional sensors has to be considered (8). The decision to go 624 

for an additional sensor will depend on the constraints of the problem, such as a limitation on the number of sensors 625 

to install, or on the marginal improvement of performance metrics. 626 

 627 
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The network reduction scenario is inverse: due to diverse reasons, mainly financial, networks require to have fewer 628 

sensors (9). Therefore, the analysis concerns what sensors to remove from the network, within the problem 629 

constraints (10). 630 

  631 

Finally, the sensor network is selected (11) from the results of the optimisation loop, with the adequate number of 632 

sensors. It is worth mentioning that an extra loop is required, leading to re-evaluation, typically done on a periodical 633 

basis, when objectives of the network may be redefined, new processes need to be monitored, or when information 634 

from other sources is available, and that can potentially modify the definition of optimality. 635 

6 Opportunities 636 
This review has shown that limited effort has been devoted to considering changes in long-term patterns of the 637 

measured variable in the sensor network design. This assumption of stationarity has become more relevant in the 638 

latter years due to new sensing technologies and climate change. Although this topic has been addressed in the 639 

literature (Nemec and Askew 1986), the number of publications referring this issue are still limited.  640 

 641 

Furthermore, in the last years, the rise of different sensing technologies in operational environments may shift the 642 

design considerations towards a unified heterogeneous sensor network. Among these new sensing technologies 643 

are passive and active remote sensing in form or radar, satellite (Thenkabali 2015), microwave link (Overeem et 644 

al. 2011), mobile sensors (Haberlandt and Sester 2010, Dahm, et al. 2014), crowdsourcing and citizen observatories 645 

(Huwald, et al. 2013, Lanfranchi, et al. 2014, Alfonso et al. 2015). These non-conventional information sources 646 

have the potential to complement conventional networks, by exploiting the synergies between the virtues and 647 

limitations of each sensing technique and show the need for the design of dynamic monitoring networks. 648 

7 Conclusions and recommendations 649 
This paper summarised some of the methodological criteria for the design of sensor networks in the context of 650 

hydrological modelling and proposed a framework for classifying the approaches in the existing literature. The 651 

following conclusions can be drawn: 652 

 653 

Most of the sensor network methodologies aim to minimise the uncertainty of the variable of interest at ungauged 654 

locations and the way this uncertainty is estimated varies between different methods. In statistics-based models, 655 

the objective is usually to minimise the overall uncertainty about precipitation fields or discharge modelling error. 656 

Information Theory-based methods aim to find measurements at locations with maximum information content and 657 

minimum redundancy. In network theory-based methods, estimations are generally not accurate, resulting in less 658 

biassed estimations. In methods based on expert judgement and Value of Information, the critical consequences of 659 

decisions dictate the network configuration. 660 

 661 

However, in spite of the underlying resemblances between methods, different formulations of the design problem 662 

can lead to rather different solutions. This gap between methods has not been deeply covered in the literature and 663 

therefore a general agreement on sensor network design procedure is relevant. 664 

 665 
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In particular, for catchment modelling, the driving criteria should also consider model performance. This driving 666 

criterion ensures that the model adequately represents the states and processes of the catchment, reducing model 667 

uncertainty and leading to more informed decisions. Currently, most of the network design methods do not ensure 668 

minimum modelling error, as often it is not the main performance criteria for design. 669 

 670 

The proposed classification of the available network design methods was used to develop a general framework for 671 

network design. Different design scenarios, namely relocation, augmentation and reduction of networks are 672 

included, for measurement-based methods. This framework is open and offers “placeholders” for various methods 673 

to be used depending on the problem type.   674 

 675 

Concerning the further research, from the hydrological modelling perspective, we propose to direct efforts towards 676 

the joint design of precipitation and discharge sensor networks. Hydrological models use precipitation data to 677 

provide discharge estimates, however as these simulations are error-prone, the assimilation of discharge data, or 678 

error correction, reduces the systematic errors in the model results. The joint design of both precipitation and 679 

discharge sensor networks may help to provide more reliable estimates of discharge at specific locations. 680 

 681 

Another direction of research may include methods for designing dynamic sensor networks, given the increasing 682 

availability of low-cost sensors, as well as the expansion of citizen-based data collection initiatives 683 

(crowdsourcing). These information sources are on the rise in the last years, and one may foresee appearance of 684 

interconnected, multi-sensor heterogeneous sensor networks shortly. 685 
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Figure 1 Typical data flow in discharge simulation with hydrological models 987 
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Figure 2 Proposed classification of methods for sensor network evaluation 989 
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Figure 3 General procedure for Model-free sensor network evaluation 991 
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Figure 4 General procedure for Model-based sensor network evaluation 994 
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Figure 5 Minimum number of rain gauges required in reservoired moorland areas - adapted from: (Bleasdale, 1965) 997 
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Figure 6 Sensor network (re) design flow chart. (CML=candidate measurement locations) 999 
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Table 1 Recommended minimum densities of stations (area in Km² per station) – Adopted from WMO [2008] 1001 

Physiographic 

unit 

Precipitation 
Evaporation Streamflow Sediments 

Water 

Quality Non-recording Recording 

Coastal 900  9,000  50,000  2,750  18,300  55,000  

Mountains 250  2,500  50,000  1,000  6,700  20,000  

Interior plains 575  5,750  5,000  1,875  12,500  37,500  

Hilly/undulating 575     5,750  50,000  1,875  12,500  47,500  

Small islands 25  250  50,000  300  2,000  6,000  

Urban areas  –   10–20   –   –   –   –  

Polar/arid  10,000 10,000  100,000  20,000  200,000  200,000 

 1002 

  1003 
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Table 2 Classification of sensor network design criteria applied in the literature 1004 

  Approaches 

  

Measurement- 

Based Measurement-

Free 

  

Model-

free 

Model-

based 

C
la

ss
es

 

Statistics-based methods    

Minimum interpolation variance x    

Minimum cross-correlation x x   

Minimum model error  x   

Information Theory- based methods   

Maximum Entropy x     

Minimum mutual information x x   

Methods based on expert recommendations   

Physiographic components x x x 

Expert judgement   x 

User survey   x 

Other methods    

Value of information x x  

Fractal characterisation x  x 

Network theory x   

 1005 
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