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We formulate a flexible micro-to-macro kinetic model which is able to explain
the emergence of income profiles out of a whole of individual economic interactions.
The model is expressed by a system of several nonlinear differential equations which
involve parameters defined by probabilities. Society is described as an ensemble
of individuals divided into income classes; the individuals exchange money through
binary and ternary interactions, leaving the total wealth unchanged. The ternary
interactions represent taxation and redistribution effects. Dynamics is investigated
through computational simulations, the focus being on the effects that different
fiscal policies and differently weighted welfare policies have on the long-run income
distributions. The model provides a tool which may contribute to the identification
of the most effective actions towards a reduction of economic inequality. We find for
instance that, under certain hypotheses, the Gini index is more affected by a policy
of reduction of the welfare and subsidies for the rich classes than by an increase of
the upper tax rate. Such a policy also has the effect of slightly increasing the total
tax revenue.

Key words: Economic inequality; taxation and redistribution models; income
distribution; welfare.

I. INTRODUCTION

Economic inequality among individuals is a longstanding phenomenon which affects, to a

large or small degree, most countries. A certain amount of inequality is unavoidable in a free

market economy, especially at times of strong growth. High inequality levels, however, have

been recognized to be harmful for economic development, to be one of the typical causes

of political instability, and to be often at the origin of several social problems, including

mental and physical diseases (see e.g. [1–3]). Tackling inequality is not an easy task and

is usually supposed to be a matter for economists, sociologists and politicians. The most

effective actions for keeping it under control are probably provided by a proper fiscal system

and by suitably targeted welfare policies.

We think that, to some extent, mathematics can also give a contribution in this direc-

tion. Through conceptual models and numerical simulations it can help to recognize and
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understand the mechanisms which cause inequality in the first place, and then let it persist.

Mathematical models allow the exploration of different conceivable scenarios and, supported

by real world data, may even suggest suitable concrete policies.

In this paper, without any inappropriate ambition to provide solutions, we formulate

a set of simplified models for the description of the micro-processes of money exchange,

taxation and redistribution in a closed market society. We show the emergence, from these

micro-processes, of collective patterns like the income distribution curve. Our models are

quite flexible and allow to consider different fiscal systems, characterized, for instance, by

different tax rates for the income classes and by different gaps between the maximum and

minimum tax rate. In addition, the models include the possibility that welfare provisions

are specifically weighted for each income class. The focus in this paper is precisely on the

effect of variable taxation and welfare on the income distribution and on its unevenness.

While traditional treatments of these subjects in mainstream economics rely on the as-

sumption of a representative rational agent, our approach fits in with a complex system

perspective. Arguments in favour of such a perspective can be found e.g. in [4–8]. We

look at a population (or society) as a system composed by a large number of heterogeneous

elements - the individuals - and we identify their interactions as the basic ingredients of the

overall process. The observable collective features result from the interplay of these interac-

tions. Accordingly, the system manifests self-organization. Due to its analytical character,

our approach also differs from others which adopt the same interaction-based perspective.

The tools most frequently employed in the study of socio-economic complex systems are

indeed agent-based models, often also in combination with a complex network structure (see

e.g. [9, 10]). Our models are expressed by systems of nonlinear ordinary differential equa-

tions of the kinetic-discretized Boltzmann type. The differential equations are as many as

the classes, distinguished by their average income, in which one divides the population. The

j-th equation (with j = 1, ..., n) describes the variation in time of the fraction xj of individ-

uals belonging to the j-th class, and the modellization of this variation involves stochastic

elements, represented by the presence in the equations of suitable transition probabilities.

These models constitute an evolution of models originally introduced in [11] and then vari-

ously modified (so as to allow the study of different questions) and investigated in [12–15].

The main novelty of the present paper is given by the inclusion in the models of differently

weighted welfare measures, aimed at recognizing ways to prevent an excessive inequality.
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In a way, our models belong to the wide class of Asset Exchange Models [16], sometimes

also called “Yard Sale” models because of their simplified representation of economic inter-

actions. The main purpose of this representation is to emphasize the statistical consequences

of the interactions of a large number of agents. It is well known in statistical mechanics that

certain aggregate features of large ensembles do not depend of the details of the interactions,

but emerge as general consequences of statistics. In view of the universal features displayed

by income distributions in several countries and in different epochs, it has long been sus-

pected that these features arise from some common general mechanism. Asset Exchange

Models could then be regarded as the economical equivalent of the perfect gas model or the

Carnot engine in physics. This position has recently been advocated by Boghosian [17], who

proposed a continuum model and derived, in a suitable limit, a partial differential equation

governing its evolution. An improvement of the model, which was explored in [17] and is

not yet present in our approach, is the introduction of economic “production”, in such a

way that the total income of the society is not constant in time. We observe that the redis-

tribution terms considered in [17] correspond to an income tax independent from the single

interactions, while in our scheme the taxation is both related to the income and applied to

each single transaction, and therefore also includes a valued added tax component.

There are further reasons to believe that kinetic models capture the “game-theoretical”

strategies of the interacting agents much more than their physical origin could suggest. In

fact, it was shown in [18, 19] for two different game-theoretical models, that their large-

numbers averages are equivalent to those of certain statistical mechanics systems. This

suggests that some models of statistical mechanics originally developed to describe ensembles

of inanimated atoms or spins are suitable also for the description of ensembles of individuals

following a strategy, because in both cases the system tends to minimize some objective

function.

The paper is organized as follows. In the next section a model family suitable for han-

dling the issue from a complexity viewpoint is introduced. Some key properties of the

family models, and the emergence of the relative aggregate outcomes together with their

features resulting from several numerical simulations are investigated and discussed in the

third section. In particular, comparisons between different models and different policies are

drawn. Finally, in the last section, a summary with a critical analysis is given and further

developments and perspectives are mentioned.
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II. A FAMILY OF MODELS ENCOMPASSING DIFFERENT WELFARE

MEASURES FOR DIFFERENT INCOME CLASSES

A. A general framework

The framework within which the model family can be constructed was first introduced in

[11]. We refer to that paper for a detailed illustration of the stylized micro-scale mechanism

that the framework aims to describe.

Imagine dividing a population of individuals into a finite number n of classes, each one

characterized by its average income, the average incomes being the positive numbers r1 <

r2 < ... < rn. Here, we just recall that also the part of the government (which of course

plays a role in connection with the taxation system) can be described through monetary

exchanges between pairs of individuals, and we emphasize that consequently two kinds of

interactions may take place: the so called direct ones, between an h-individual and a k-

individual, occurring when the first one pays the second one, and the indirect ones, between

the h-individual and every j-individual with j 6= n, occurring on the occasion of the direct

h-k interaction. The indirect interactions represent the transactions corresponding to the

payment of taxes and to the benefit of the redistribution. In short, and we are referring

here to a tax compliance case, in correspondence to any direct h-k interaction, if S (with

S < (ri+1−ri) for all i = 1, ..., n) denotes the amount of money that the h-individual should

pay to the k-one, the overall effect of payment, taxation and redistribution is that of an

h-individual paying a quantity S (1− τ) to a k-individual and paying as well a quantity S τ ,

which is divided among all j-individuals for j 6= n.1 The quantity τ = τk, which is assumed

to depend on the class to which the earning individual belongs, corresponds to the taxation

rate of the k-th class.

The taxation and redistribution processes relative to such a population can be modelled

within the framework provided by the system of n nonlinear differential equations

dxi

dt
=

n
∑

h=1

n
∑

k=1

(

C i
hk + T i

[hk](x)
)

xhxk − xi

n
∑

k=1

xk , i = 1 , ... , n . (1)

Here, xi(t) with xi : R → [0,+∞) denotes the fraction at time t of individuals belonging to

the i-th class; the coefficients C i
hk ∈ [0,+∞), satisfying

∑n

i=1C
i
hk = 1 for any fixed h and

1 Individuals of the n-th class cannot receive money. Otherwise, they would possibly advance to a higher

class. And this is not permitted in the present context.
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k, represent transition probability densities due to the direct interactions (more precisely,

C i
hk expresses the probability density that an individual of the h-th class will belong to the

i-th class after a direct interaction with an individual of the k-th class), and the functions

T i
[hk] : R

n → R, continuous and satisfying
∑n

i=1 T
i
[hk](x) = 0 for any fixed h, k and x ∈ Rn,

represent transition variation densities due to the indirect interactions (more precisely, T i
[hk]

expresses the variation density in the i-th class due to an interaction between an individual

of the h-th class with an individual of the k-th class). The system (1) accounts for the fact

that any direct or indirect interaction possibly causes a slight increase or decrease of the

income of individuals.

B. Construction of a specific model family

We start by defining certain coefficients ph,k for h, k = 1, ..., n, which express the proba-

bility that in an encounter between an h-individual and a k-individual, the one who pays is

the h-individual. Since also the possibility that none of the two pays has to be taken into

account, the requirement which the ph,k must satisfy is that 0 ≤ ph,k ≤ 1 and ph,k+pk,h ≤ 1.

We take

ph,k = min{rh, rk}/4rn ,

with the exception of the terms pj,j = rj/2rn for j = 2, ..., n−1, ph,1 = r1/2rn for h = 2, ..., n,

pn,k = rk/2rn for k = 1, ..., n− 1, p1,k = 0 for k = 1, ..., n and phn = 0 for h = 1, ..., n. This

choice, among others, was proposed and discussed in [13]. It gives account of a degree of

heterogeneity among individuals belonging to different classes, also in connection with their

interactions with others.

We are now ready to construct a particular family of models. This will be done through

the choice of the values of the parameters C i
hk ∈ [0,+∞) and of the functions T i

[hk](x) :

Rn → R.

As in [11–13], we assume that the only possibly nonzero elements among the C i
hk are:

C i
i+1,k = pi+1,k

S (1− τk)

ri+1 − ri
,

C i
i,k = 1− pk,i

S (1− τi)

ri+1 − ri
− pi,k

S (1− τk)

ri − ri−1
,

C i
i−1,k = pk,i−1

S (1− τi−1)

ri − ri−1

. (2)
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We stress that the expression for C i
i+1,k in (2) holds true for i ≤ n − 1 and k ≤ n − 1; the

second addendum of the expression for C i
i,k is effectively present only provided i ≤ n − 1

and k ≥ 2, while its third addendum is present only provided i ≥ 2 and k ≤ n − 1; the

expression for C i
i−1,k holds true for i ≥ 2 and k ≥ 2.

As for the indirect transition variation densities T i
[hk](x), we express them as

T i
[hk](x) = U i

[hk](x) + V i
[hk](x) , (3)

where2

U i
[hk](x) =

ph,k S τk
∑n

j=1wjxj

(

wi−1xi−1

ri − ri−1
−

wixi

ri+1 − ri

)

(4)

represents the variation density corresponding to the advancement from a class to the sub-

sequent one, due to the benefit of taxation and3

V i
[hk](x) = ph,k S τk

∑n−1
j=1 wjxj

∑n

j=1wjxj

(

δh,i+1

rh − ri
−

δh,i
rh − ri−1

)

, (5)

with δh,k denoting the Kronecker delta, represents the variation density corresponding to

the retrocession from a class to the preceding one, due to the payment of some tax.

The coefficients wj in (4) and (5) denote the weights here introduced to account for differently

distributed welfare. A conceivable expression for them is given e.g. by

wj = rn+1−j +
2

n− 1
γ

(

j −
n+ 1

2

)

(rn − r1) , (6)

with γ ∈ (0, 1/2]. The effect of the parameter γ is such that the smaller γ is, the larger is

the difference w1−wn. Indeed, w1−wn = (rn− r1) (1− 2γ). And, if for example rj is taken

to be linear in j, wj decreases linearly as a function of j, with the exception of the limiting

case when γ = 1/2, in which wj has the same value for each j = 1, ..., n.

Notice that the effective amount of money representing taxes, which is paid in correspon-

dence to a payment of S(1− τk) and is then redistributed is S τk (
∑n−1

j=1 wjxj)/(
∑n

j=1wjxj)

instead of S τk. This is a technical device, due to the bound on the income of individuals in

the n-th class.

2 In (4), h > 1 and the terms involving the index i − 1 [respectively, i + 1] are effectively present only

provided i− 1 ≥ 1 [respectively, i+ 1 ≤ n]. In other words: the 1o term into parentheses on the r.h.s. of

(4) is present for 2 ≤ i ≤ n; the 2o term into parentheses on the r.h.s. of (4) is present for 1 ≤ i ≤ n− 1.
3 In (5), h > 1 and the terms involving the index i − 1 [respectively, i + 1] are effectively present only

provided i− 1 ≥ 1 [respectively, i+ 1 ≤ n]. In other words: the 1o term into parentheses on the r.h.s. of

(5) is present for 1 ≤ i ≤ n− 1; the 2o term into parentheses on the r.h.s. of (5) is present for 2 ≤ i ≤ n.
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To fix ideas, we take S = 1,

rj = 25 j , (7)

τj = τmin +
j − 1

n− 1
(τmax − τmin) , (8)

for j = 1, ..., n, where τmax and τmin respectively denote the maximum and the minimum

tax rate. Still, the value of γ, τmin and τmax have to be fixed. Hence, the equations (1)

describe a family of models rather than a single model. They are well beyond analytical

solutions. But, relevant facts can be understood through simulations. To run simulations,

we take here n = 15.

III. PROPERTIES OF THE MODEL FAMILY

We start here by stating three properties which hold true for any model of the family

introduced in the Subsection II B. While for the first two properties an analytical proof

can be provided, the third one is in fact only supported by a number of simulations.

Well posedness of the Cauchy problem. For fixed values of the parameters γ, τmin and

τmax, in correspondence to any initial condition x0 = (x01, . . . , x0n), for which x0i ≥ 0 for all

i = 1, ..., n and
∑n

i=1 x0i = 1, a unique solution x(t) = (x1(t), . . . , xn(t)) of (1) exists, which

is defined for all t ∈ [0,+∞), satisfies x(0) = x0 and also

xi(t) ≥ 0 for i = 1, ..., n and

n
∑

i=1

xi(t) = 1 for all t ≥ 0 . (9)

This has been analytically proved in [11] for similar models. The proof therein can be quite

easily adapted to hold true in the present situation as well.

Conservation of the total income µ. For fixed values of the parameters γ, τmin and

τmax, the scalar function µ(x) =
∑n

i=1 rixi, expressing the global (and mean) income, is a

first integral for the system (1). Again, the result can be proved by introducing some slight,

obvious modifications in the corresponding proof in [11].

Uniqueness, for any fixed value of µ, of the asymptotic stationary distribution.

For fixed values of the parameters γ, τmin and τmax, for any fixed value µ ∈ [r1, rn], an equi-

librium of (1) exists, to which all solutions of (1), whose initial conditions x0 = (x01, . . . , x0n)

satisfy x0i ≥ 0 for all i = 1, ..., n,
∑n

i=1 x0i = 1, and
∑n

i=1 rix0i = µ tend asymptotically



8

as t → +∞. In other words, a one-parameter family of asymptotic stationary distributions

exists, the parameter being the total income value.

Other properties are directly related to the issue of interest here. They concern compar-

isons between models of the family at hand, characterized by different fiscal systems and

different welfare policies. To quantitatively evaluate the consequences of these differences,

it is useful to refer to indicators as the Gini index G and the tax revenue TR. We first recall

here the definition of these two quantities. Then we will try and see, with reference to some

specific examples, which one among two conceivable policies is more efficient, one of the two

conceivable policies being the adoption of a fiscal system characterized by a suitable spread

between the maximum and the minimum income class tax rates and the other one being the

introduction of suitably weighted welfare measures.

The definition of the Gini index involves the Lorenz curve, which plots the cumulative

percentage of the total income of a population (on the y axis) earned by the bottom percent-

age of individuals (on the x axis). Specifically, G corresponds to the ratio A1/A2 of the area

A1 between the Lorenz curve and the line of perfect equality (the line at 45 degrees) and

the total area A2 under the line of perfect equality. It takes values in [0, 1], 0 representing

the complete equality and 1 the maximal inequality.

The tax revenue is the total amount of tax collected in the unit time and redistributed

as welfare provisions. It is given by

TR =

n
∑

h=1

n
∑

k=1

n−1
∑

j=1

phk τk
wjx̂j

(
∑n

i=1wix̂i)
x̂hx̂k , (10)

where x̂i denotes the fraction of individuals in the i-th class at equilibrium.

A. Adopting different fiscal systems

Concerning the choice of different fiscal systems, we take into account the possibility of

varying the tax rates, expressed according to the progressive rule (8), by letting τmin and

τmax change. In contrast, we fix here γ = 0.5, which amounts to grant the same welfare to

each class.

The results for a couple of prototypical simulation sets are given next. In each of the two

cases, a random initial income distribution is chosen, subject to the requirement that the

majority of individuals belong to lower income classes.
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Example 1. The value of the total income µ is here equal to µ = 135.00. We consider

different model versions, corresponding to different choices of the minimum and maximum

tax rate τmin and τmax. Letting the situation evolve, we then evaluate the Gini index

relative to the asymptotic stationary distribution. And we evaluate as well the tax revenue

corresponding to this distribution. The outputs are reported in Table I.

τmin τmax Gini Index Tax Revenue

30% 45% 0.368 0.0222

25% 50% 0.361 0.0219

20% 55% 0.354 0.0215

15% 60% 0.347 0.0210

10% 65% 0.341 0.0205

TABLE I: The data in this table refer to models for which different minimum and maximum tax
rate are assumed. The value of the Gini index and of the tax revenue relative to the asymptotic
stationary distribution, which are obtained through the numerical simulations, are given. In all
cases, the initial condition is the same. The value of the corresponding total income is here
µ = 135.00.

Example 2. As in the Example 1 we consider here different model versions, corresponding

to different choices of the minimum and maximum tax rate τmin and τmax. The total income

is µ = 127.65. The outputs are reported in Table II.

τmin τmax Gini Index Tax Revenue

30% 45% 0.378 0.0206

25% 50% 0.370 0.0201

20% 55% 0.364 0.0196

15% 60% 0.357 0.0190

10% 65% 0.350 0.0183

TABLE II: The data in this table refer to models for which different minimum and maximum tax
rate are assumed. The value of the Gini index and of the tax revenue relative to the asymptotic
stationary distribution, which are obtained through the numerical simulations, are given. In all
cases, the initial condition is the same. The value of the corresponding total income is here
µ = 127.65.

The outputs of these and several other simulations can be summarized in the following

statement.

Dependence of the asymptotic stationary distribution on τmin and τmax. The

profile of the asymptotic stationary distribution depends on τmin and τmax. For example, if



10

the difference between the maximum and the minimum tax rates, τmax − τmin is enlarged,

while all other data are kept unchanged, an increase of the fraction of individuals belonging

to the middle classes (to the detriment of those in the poorest and richest classes) can be

detected at the asymptotic equilibrium.

B. Adopting different welfare measures

We then consider different model versions obtained incorporating a differentiated welfare

system. Specifically, we let the initial data of the Examples 1 and 2 evolve in correspondence

to systems for which the minimum and maximum tax rates are fixed (and amount in par-

ticular to 30% and 45% respectively). In addition to the model in which the same welfare

provision is guaranteed to each class, we consider, for both cases of Example 1 and Example

2, seven variants encompassing different welfare for different classes. These variants are con-

structed through the choice of different values, ranging from 0.45 to 0.15, of the parameter

γ. Recall that providing the same welfare to each class amounts to taking γ = 0.5.

The results we get are summarized in the Tables III and IV . In these tables, beside the

values of the parameter γ, also the ratios w15/w1 are listed. They express the proportion of

welfare which is granted to individuals of the richest class with respect to that one granted

to individuals of the poorest class.

γ w15/w1 Gini Index Tax Revenue

0.50 1 0.368 0.0222

0.45 0.84 0.363 0.0225

0.40 0.70 0.358 0.0227

0.35 0.58 0.353 0.0229

0.30 0.48 0.349 0.0231

0.25 0.39 0.345 0.0233

0.20 0.31 0.341 0.0235

0.15 0.24 0.338 0.0236

TABLE III: The data in this table refer to models characterized by differentiated welfare policies.
In all cases, the initial condition is the same: it is the same as in the Example 1.

Figures 1 and 2 give a visual representation. The two four-panel-blocks concern asymp-

totic solutions evolving from the same initial data considered in the Examples 1 and 2

respectively. In each such block, the panels in the first row display the asymptotic station-
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γ w15/w1 Gini Index Tax Revenue

0.50 1 0.378 0.0206

0.45 0.84 0.372 0.0208

0.40 0.70 0.368 0.0210

0.35 0.58 0.363 0.0212

0.30 0.48 0.359 0.0214

0.25 0.39 0.355 0.0215

0.20 0.31 0.352 0.0217

0.15 0.24 0.348 0.0218

TABLE IV: The data in this table refer to models characterized by differentiated welfare policies.
In all cases, the initial condition is the same: it is the same as in the Example 2.

ary distribution of the model in which the welfare is given by the formula (6) with γ = 0.45

(on the left) and with γ = 0.15 (on the right). As for the histograms in the second row: that

on the left depicts for each class the difference between the fraction of individuals pertaining

to the model with γ = 0.45 and the fraction of individuals pertaining to the model with the

same welfare for all classes; that on the right depicts for each class the difference between the

fraction of individuals pertaining to the model with γ = 0.15 and the fraction of individuals

pertaining to the model with the same welfare for all classes.

The following can be concluded based on these and similar simulations.

Dependence of the asymptotic stationary distribution on differently weighted

welfare measures. The profile of the asymptotic stationary distribution depends on γ.

When γ decreases and all other data are kept unchanged, at the asymptotic equilibrium an

increase of the fraction of individuals belonging to the middle classes (and, correspondingly,

a decrease of those in the poorest and richest classes) can be detected.

C. Some comparisons and observations

The data of Table I show that the dependence of the Gini index G on the difference

∆τ = (τmax − τmin) is almost exactly linear, see Figure 3, left panel. The regression line

has equation G = −0.0007∆τ + 0.378 (R2 = 0.9991) and this can be expressed by saying

that in order to obtain a 1% reduction of the Gini index, ∆τ must increase by approx. 15%.

This should be compared with the dependence of G on changes in welfare redistribution. For

instance, a linear fit of the data of Table III gives a regression lineG = 0.04(w15/w1)+0.3291
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FIG. 1: Asymptotic solutions evolving from the same initial data as in the Example 1. In the first
row, on the left [resp., on the right] is the asymptotic stationary distribution of the model in which
the welfare is given by the formula (6) with γ = 0.45 [resp., with γ = 0.15]; The histograms in
the second row (scaled differently w.r. to those in the first one) depict the difference between the
fraction of individuals in each class pertaining to two models: these are: on the left [resp., on the
right], the model with γ = 0.45 [resp., with γ = 0.15] and that one with the same welfare for all
classes.
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FIG. 2: Asymptotic solutions evolving from the same initial data as in the Example 2. In the first
row, on the left [resp., on the right] is the asymptotic stationary distribution of the model in which
the welfare is given by the formula (6) with γ = 0.45 [resp., with γ = 0.15]; The histograms in
the second row (scaled differently w.r. to those in the first one) depict the difference between the
fraction of individuals in each class pertaining to two models: these are: on the left [resp., on the
right], the model with γ = 0.45 [resp., with γ = 0.15] and that one with the same welfare for all
classes.

(R2 = 0.9955), see Figure 3, right panel. This means that a 1% reduction of G can be

obtained approx. by a 25% diminution of the ratio w15/w1, which appears to be a far less

“invasive” policy measure (it is a 25% cut in the welfare received from the richest class,

compared to that received from the poorest; the intermediate classes undergo proportional

cuts).

Finally, the data of Tables I-IV show a remarkable decrease in the total tax revenue
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when the gap ∆τ is increased, while the contrary occurs when the welfare for the rich (the

ratio w15/w1) is decreased. This means that in our model the inequality-reduction policy of

“taxing the rich much more than the poor” is not only less efficient than “cutting the welfare

for the rich”, but also leads to a reduction in the government budget and thus possibly to a

loss of jobs.

20 30 40 50
Τmax - Τmin

0.345

0.350

0.355

0.360

0.365

G

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

w15

w1

0.340

0.345

0.350

0.355

0.360

0.365

G

FIG. 3: Left: dependence of the inequality Gini index G on the difference ∆τ = (τmax − τmin)
between the maximum and the minimum tax rate (for the richest and poorest class respectively).
The Gini index decreases almost linearly when ∆τ increases. Right: dependence of G on the ratio
w15/w1 between the welfare provision assigned to an individual of the income class 15 and 1. G
decreases almost linearly when the ratio decreases. These two panels refer to the data and to the
linear fits in the Tables I and III .

IV. CONCLUDING REMARKS

Our models are based on a system of differential equations of the kinetic discretized-

Boltzmann kind. Society is described as an ensemble of individuals divided into a finite

number of income classes; these individuals exchange money through binary and ternary

interactions, leaving the total wealth unchanged. The interactions occur with a certain

predefined frequency and several other parameters can also be set, in order to provide a

probabilistic representation as realistic as possible. For instance, we can fix the probability

that in an encounter between two individuals the one who pays is the rich or the poor; we

can make the exchanged amount depend on the income classes (variable saving propensity),

etc. After a sufficiently long time the solution of the equations reaches an equilibrium state

characterized by an income distribution, which depends on the total income and on the

interaction parameters, but not on the initial distribution. We emphasize here that it would

be possible to introduce further heterogeneity in various meaningful ways. For instance,

one could assign specific interaction frequencies to the income classes through additional

coefficients to be inserted in the equations, or introduce a network structure or “behavioral
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sectors”, which comprise honest taxpayers, occasional tax evaders, etc. (this is the object

of work in preparation, [20]).

The ternary interactions represent taxation and redistribution effects: they express the

subtraction, in correspondence to each binary transfer, of an amount whose percentage (tax

rate) depends on the income classes of the individuals involved in the interaction; and they

define the redistribution of this amount to all other individuals. In the simplest version

of the model the redistribution is uniform. In order to represent a more realistic welfare

system we have introduced in this work a weighted redistribution: the poorest classes receive

a larger part of the total tax revenue, according to a linearly increasing function. This may

describe a means-tested welfare system or a policy of limitation of the “indirect subsidies

for the rich”. We have then investigated the dependence on this redistribution parameter

of the inequality of the society, as measured from the Gini index or from the shape of the

income distribution.

The Gini inequality indices G of the income profiles of our model turn out to be quite

realistic. Actually, we can easily compare “pre-redistribution” values of G (those obtained

when taxation terms are switched off) with the values after redistribution. Detailed real

data for such quantities have recently become available [21]. With a pre-redistribution value

of G of ca. 0.46 for the numerical solutions of Table IV , and a post-redistribution value of

G which varies between 0.34 and 0.38, depending on taxation rates and welfare parameters,

it turns out that we are quite close to the real data of the United States (while, for instance,

economies like Germany and Denmark exhibit a markedly larger redistribution gap).

Still concerning the redistribution aspect, we would like to stress that this aspect is

present also in Asset Exchange Models based on purely physical analogies, but only the

present paper proposes, to our knowledge, a redistribution which can be tuned on the single

income classes, thus simulating the working principle of a real means-tested welfare policy.

In other words, physical analogies can represent well situations where, for instance, particles

dissipate energy through radiation, and the radiation is re-distributed to the whole system;

but it is not possible to tune this redistribution in an arbitrary way.

A further advantage of our model is to allow the evaluation of social mobility [20]. This

cannot be extracted, of course, from the equilibrium income distribution alone, but requires

consideration of the probabilities of class advancement. Our numerical results concerning

social mobility confirm the empirical correlation observed between mobility and equality
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[3, 22]. Using the tunable welfare scheme introduced in this paper, it has even been possible

to find numerically some “equi-Gini lines” in the tax-rates/welfare plane τ -w, i.e. to locate

in the plane of these two variables some continuous lines along which the variation of tax

rates and welfare parameters leave the inequality index constant.

In conclusion, we found that in order to diminish inequality, a policy of reduction of the

welfare and subsidies for the rich classes is more effective than an increase in the taxation

rate gap τmax − τmin. This same policy also has the effect of slightly increasing the total

tax revenue, instead of decreasing it. It therefore avoids potentially painful cuts in the

government budget. The results obtained from these simplified models have clearly a limited

validity, but we believe that they are conceptually interesting and can serve as a basis and

stimulus for further analysis.
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