Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogenesis and management of Brugada syndrome

Key Points

  • Brugada syndrome is an inherited disease responsible for a large number of sudden deaths in young people without structural heart anomalies

  • The pathophysiology of Brugada syndrome is unclear; repolarization–depolarization abnormalities underlying this disease can present with different features in different patients

  • A common electrocardiogram (ECG) phenotype seen in patients with Brugada syndrome might be the result of different pathophysiological mechanisms

  • Symptom-type, a spontaneous type 1 ECG pattern, the presence of sinus node dysfunction, and inducible ventricular arrhythmias during programmed stimulation of the heart might help to stratify patients by risk

  • Implantable cardioverter–defibrillator therapy is the most accepted treatment strategy for at-risk patients

  • Electrophysiological-guided therapy with quinidine and radiofrequency substrate ablation might also have a role in the management of these patients

Abstract

Brugada syndrome is an inherited disease characterized by an increased risk of sudden cardiac death owing to ventricular arrhythmias in the absence of structural heart disease. Since the first description of the syndrome >20 years ago, considerable advances have been made in our understanding of the underlying mechanisms involved and the strategies to stratify at-risk patients. The development of repolarization–depolarization abnormalities in patients with Brugada syndrome can involve genetic alterations, abnormal neural crest cell migration, improper gap junctional communication, or connexome abnormalities. A common phenotype observed on the electrocardiogram of patients with Brugada syndrome might be the result of different pathophysiological mechanisms. Furthermore, risk stratification of this patient cohort is critical, and although some risk factors for Brugada syndrome have been frequently reported, several others remain unconfirmed. Current clinical guidelines offer recommendations for patients at high risk of developing sudden cardiac death, but the management of those at low risk has not yet been defined. In this Review, we discuss the proposed mechanisms that underlie the development of Brugada syndrome and the current risk stratification and therapeutic options available for these patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The repolarization theory of Brugada syndrome.
Figure 2: The depolarization theory of Brugada syndrome.
Figure 3: Neural crest cell migration.
Figure 4: Electrocardiogram patterns associated with Brugada syndrome.

Similar content being viewed by others

References

  1. Brugada, P. & Brugada, J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J. Am. Coll. Cardiol. 20, 1391–1396 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Antzelevitch, C. et al. Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation 111, 659–670 (2005).

    Article  PubMed  Google Scholar 

  3. Nademanee, K. et al. Arrhythmogenic marker for the sudden unexplained death syndrome in Thai men. Circulation 96, 2595–2600 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Tan, H. L., Hofman, N., van Langen, I. M., van der Wal, A. C. & Wilde, A. A. Sudden unexplained death: heritability and diagnostic yield of cardiological and genetic examination in surviving relatives. Circulation 112, 207–213 (2005).

    Article  PubMed  Google Scholar 

  5. van der Werf, C. et al. Diagnostic yield in sudden unexplained death and aborted cardiac arrest in the young: the experience of a tertiary referral center in The Netherlands. Heart Rhythm 7, 1383–1389 (2010).

    Article  PubMed  Google Scholar 

  6. Mellor, G. et al. Clinical characteristics and circumstances of death in the sudden arrhythmic death syndrome. Circ. Arrhythm. Electrophysiol. 7, 1078–1083 (2014).

    Article  PubMed  Google Scholar 

  7. Garson, A. Jr et al. The long QT syndrome in children. An international study of 287 patients. Circulation 87, 1866–1872 (1993).

    Article  PubMed  Google Scholar 

  8. Kapplinger, J. D. et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm 7, 33–46 (2010).

    Article  PubMed  Google Scholar 

  9. Hu, D. et al. Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome. J. Am. Coll. Cardiol. 64, 66–79 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nielsen, M. W., Holst, A. G., Olesen, S. P. & Olesen, M. S. The genetic component of Brugada syndrome. Frontiers Physiol. 4, 179 (2013).

    Article  CAS  Google Scholar 

  11. Dendramis, G., Antzelevitch, C. & Brugada, P. Brugada Syndrome: Diagnosis, Clinical Manifestations, Risk Stratification and Treatment. (Nova Science Publishers, 2015).

  12. Sarquella-Brugada, G., Campuzano, O., Arbelo, E., Brugada, J. & Brugada, R. Brugada syndrome: clinical and genetic findings. Genet. Med. 18, 3–12 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Ueda, K. et al. Role of HCN4 channel in preventing ventricular arrhythmia. J. Hum. Genet. 54, 115–121 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, H. et al. Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel. PLoS ONE 8, e54131 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Syam, N. et al. Variants of transient receptor potential melastatin member 4 in childhood atrioventricular block. J. Am. Heart Assoc. 5, e001625 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sato, P. Y. et al. Interactions between ankyrin-G, plakophilin-2, and connexin43 at the cardiac intercalated disc. Circ. Res. 109, 193–201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sato, P. Y. et al. Loss of plakophilin-2 expression leads to decreased sodium current and slower conduction velocity in cultured cardiac myocytes. Circ. Res. 105, 523–526 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cerrone, M. et al. Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype. Circulation 129, 1092–1103 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Bezzina, C. R. et al. Common variants at SCN5A- SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat. Genet. 45, 1044–1049 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Campuzano, O., Brugada, R. & Iglesias, A. Genetics of Brugada syndrome. Curr. Opin. Cardiol. 25, 210–215 (2010).

    Article  PubMed  Google Scholar 

  21. Crotti, L. et al. Spectrum and prevalence of mutations involving BrS1- through BrS12-susceptibility genes in a cohort of unrelated patients referred for Brugada syndrome genetic testing: implications for genetic testing. J. Am. Coll. Cardiol. 60, 1410–1418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Le Scouarnec, S. et al. Testing the burden of rare variation in arrhythmia-susceptibility genes provides new insights into molecular diagnosis for Brugada syndrome. Hum. Mol. Genet. 24, 2757–2763 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Ackerman, M. J. et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm 8, 1308–1339 (2011).

    Article  PubMed  Google Scholar 

  24. Yan, G. X. & Antzelevitch, C. Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. Circulation 100, 1660–1666 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Bloch Thomsen, P. E. et al. Phase 2 reentry in man. Heart Rhythm 2, 797–803 (2005).

    Article  PubMed  Google Scholar 

  26. Antzelevitch, C. In vivo human demonstration of phase 2 reentry. Heart Rhythm 2, 804–806 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Szel, T. & Antzelevitch, C. Abnormal repolarization as the basis for late potentials and fractionated electrograms recorded from epicardium in experimental models of Brugada syndrome. J. Am. Coll. Cardiol. 63, 2037–2045 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Koncz, I. et al. Mechanisms underlying the development of the electrocardiographic and arrhythmic manifestations of early repolarization syndrome. J. Mol. Cell. Cardiol. 68, 20–28 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Patocskai, B. & Antzelevitch, C. Novel therapeutic strategies for the management of ventricular arrhythmias associated with the Brugada syndrome. Expert Opin. Orphan Drugs 3, 633–651 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Coronel, R. et al. Right ventricular fibrosis and conduction delay in a patient with clinical signs of Brugada syndrome: a combined electrophysiological, genetic, histopathologic, and computational study. Circulation 112, 2769–2777 (2005).

    Article  PubMed  Google Scholar 

  31. Nademanee, K. et al. Prevention of ventricular fibrillation episodes in Brugada syndrome by catheter ablation over the anterior right ventricular outflow tract epicardium. Circulation 123, 1270–1279 (2011).

    Article  PubMed  Google Scholar 

  32. Boukens, B. J. et al. Reduced sodium channel function unmasks residual embryonic slow conduction in the adult right ventricular outflow tract. Circ. Res. 113, 137–141 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. van Rijen, H. V. et al. Slow conduction and enhanced anisotropy increase the propensity for ventricular tachyarrhythmias in adult mice with induced deletion of connexin43. Circulation 109, 1048–1055 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Moorman, A. F. & Christoffels, V. M. Cardiac chamber formation: development, genes, and evolution. Physiol. Rev. 83, 1223–1267 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Borggrefe, M. & Schimpf, R. J-wave syndromes caused by repolarization or depolarization mechanisms a debated issue among experimental and clinical electrophysiologists. J. Am. Coll. Cardiol. 55, 798–800 (2010).

    Article  PubMed  Google Scholar 

  36. Elizari, M. V. et al. Abnormal expression of cardiac neural crest cells in heart development: a different hypothesis for the etiopathogenesis of Brugada syndrome. Heart Rhythm 4, 359–365 (2007).

    Article  PubMed  Google Scholar 

  37. Waldo, K. L., Lo, C. W. & Kirby, M. L. Connexin 43 expression reflects neural crest patterns during cardiovascular development. Dev. Biol. 208, 307–323 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Sohl, G. & Willecke, K. Gap junctions and the connexin protein family. Cardiovasc. Res. 62, 228–232 (2004).

    Article  PubMed  CAS  Google Scholar 

  39. Kumar, N. M. & Gilula, N. B. The gap junction communication channel. Cell 84, 381–388 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Ewart, J. L. et al. Heart and neural tube defects in transgenic mice overexpressing the Cx43 gap junction gene. Development 124, 1281–1292 (1997).

    CAS  PubMed  Google Scholar 

  41. Dhar Malhotra, J. et al. Characterization of sodium channel alpha- and beta-subunits in rat and mouse cardiac myocytes. Circulation 103, 1303–1310 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Malhotra, J. D., Kazen-Gillespie, K., Hortsch, M. & Isom, L. L. Sodium channel beta subunits mediate homophilic cell adhesion and recruit ankyrin to points of cell-cell contact. J. Biol. Chem. 275, 11383–11388 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Jansen, J. A. et al. Reduced heterogeneous expression of Cx43 results in decreased Nav1.5 expression and reduced sodium current that accounts for arrhythmia vulnerability in conditional Cx43 knockout mice. Heart Rhythm 9, 600–607 (2012).

    Article  PubMed  Google Scholar 

  44. Desplantez, T. et al. Connexin43 ablation in foetal atrial myocytes decreases electrical coupling, partner connexins, and sodium current. Cardiovasc. Res. 94, 58–65 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lubkemeier, I. et al. Deletion of the last five C-terminal amino acid residues of connexin43 leads to lethal ventricular arrhythmias in mice without affecting coupling via gap junction channels. Bas. Res. Cardiol. 108, 348 (2013).

    Article  CAS  Google Scholar 

  46. Poelzing, S., Akar, F. G., Baron, E. & Rosenbaum, D. S. Heterogeneous connexin43 expression produces electrophysiological heterogeneities across ventricular wall. Am. J. Physiol. Heart Circulatory Physiol. 286, H2001–2009 (2004).

    Article  CAS  Google Scholar 

  47. Vaidya, D. et al. Null mutation of connexin43 causes slow propagation of ventricular activation in the late stages of mouse embryonic development. Circ. Res. 88, 1196–1202 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Nademanee, K. et al. Fibrosis, connexin-43, and conduction abnormalities in the Brugada syndrome. J. Am. Coll. Cardiol. 66, 1976–1986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Agullo-Pascual, E., Cerrone, M. & Delmar, M. Arrhythmogenic cardiomyopathy and Brugada syndrome: diseases of the connexome. FEBS Lett. 588, 1322–1330 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rhett, J. M. & Gourdie, R. G. The perinexus: a new feature of Cx43 gap junction organization. Heart Rhythm 9, 619–623 (2012).

    Article  PubMed  Google Scholar 

  51. Petitprez, S. et al. SAP97 and dystrophin macromolecular complexes determine two pools of cardiac sodium channels Nav1.5 in cardiomyocytes. Circ. Res. 108, 294–304 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Rhett, J. M., Veeraraghavan, R., Poelzing, S. & Gourdie, R. G. The perinexus: sign-post on the path to a new model of cardiac conduction? Trends Cardiovascular Med. 23, 222–228 (2013).

    Article  CAS  Google Scholar 

  53. Zareba, W. et al. Influence of genotype on the clinical course of the long-QT syndrome. International Long-QT Syndrome Registry Research Group. N. Engl. J. Med. 339, 960–965 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Webster, G. & Berul, C. I. Congenital long-QT syndromes: a clinical and genetic update from infancy through adulthood. Trends Cardiovascular Med. 18, 216–224 (2008).

    Article  Google Scholar 

  55. Garcia, J. et al. Clinical genetic testing for the cardiomyopathies and arrhythmias: a systematic framework for establishing clinical validity and addressing genotypic and phenotypic heterogeneity. Front. Cardiovasc.Med. 3, 20 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Dendramis, G. Coronary anomalies and Brugada phenocopy, the first documented case in the world. Int. J. Cardiol. 199, 335–336 (2015).

    Article  PubMed  Google Scholar 

  57. Priori, S. G. Natural history of Brugada syndrome: insights for risk stratification and management. Circulation 105, 1342–1347 (2002).

    Article  PubMed  Google Scholar 

  58. Sieira, J. et al. Prognostic value of programmed electrical stimulation in Brugada syndrome: 20 years experience. Circ. Arrhythm. Electrophysiol. 8, 777–784 (2015).

    Article  PubMed  Google Scholar 

  59. Probst, V. et al. Long-term prognosis of patients diagnosed with Brugada syndrome: results from the FINGER Brugada Syndrome Registry. Circulation 121, 635–643 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Priori, S. G. et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 36, 2793–2867 (2015).

    Article  PubMed  Google Scholar 

  61. Priori, S. G. et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm 10, 1932–1963 (2013).

    Article  PubMed  Google Scholar 

  62. Olde Nordkamp, L. R. et al. Implantable cardioverter-defibrillator harm in young patients with inherited arrhythmia syndromes: A systematic review and meta-analysis of inappropriate shocks and complications. Heart Rhythm 13, 443–454 (2016).

    Article  PubMed  Google Scholar 

  63. Conte, G. et al. Implantable cardioverter-defibrillator therapy in Brugada syndrome: a 20-year single-center experience. J. Am. Coll. Cardiol. 65, 879–888 (2015).

    Article  PubMed  Google Scholar 

  64. Sacher, F. et al. Outcome after implantation of a cardioverter-defibrillator in patients with Brugada syndrome: a multicenter study-part 2. Circulation 128, 1739–1747 (2013).

    Article  PubMed  Google Scholar 

  65. Brugada, J. et al. Brugada syndrome phenotype elimination by epicardial substrate ablation. Circ. Arrhythm. Electrophysiol. 8, 1373–1381 (2015).

    Article  PubMed  Google Scholar 

  66. Belhassen, B., Rahkovich, M., Michowitz, Y., Glick, A. & Viskin, S. Management of Brugada syndrome: thirty-three-year experience using electrophysiologically guided therapy with class 1A antiarrhythmic drugs. Circ. Arrhythm. Electrophysiol. 8, 1393–1402 (2015).

    Article  PubMed  Google Scholar 

  67. Sroubek, J. et al. Programmed ventricular stimulation for risk stratification in the Brugada syndrome: a pooled analysis. Circulation 133, 622–630 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sieira, J. et al. Clinical characterisation and long-term prognosis of women with Brugada syndrome. Heart 102, 452–458 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Bagnall, R. D. et al. Prospective study of sudden cardiac death among children and young adults. N. Engl. J. Med. 374, 2441–2452 (2016).

    Article  PubMed  Google Scholar 

  70. Priori, S. G. et al. Risk stratification in Brugada syndrome: results of the PRELUDE (PRogrammed ELectrical stimUlation preDictive valuE) registry. J. Am. Coll. Cardiol. 59, 37–45 (2012).

    Article  PubMed  Google Scholar 

  71. Delise, P. et al. Risk stratification in individuals with the Brugada type 1 ECG pattern without previous cardiac arrest: usefulness of a combined clinical and electrophysiologic approach. Eur. Heart J. 32, 169–176 (2011).

    Article  PubMed  Google Scholar 

  72. Sieira, J. et al. Asymptomatic Brugada syndrome: clinical characterization and long-term prognosis. Circ. Arrhythm. Electrophysiol. 8, 1144–1150 (2015).

    Article  PubMed  Google Scholar 

  73. Brugada, J. Long-term follow-up of individuals with the electrocardiographic pattern of right bundle-branch block and ST-segment elevation in precordial leads V1 to V3. Circulation 105, 73–78 (2002).

    Article  PubMed  Google Scholar 

  74. Deo, R. & Albert, C. M. Epidemiology and genetics of sudden cardiac death. Circulation 125, 620–637 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Delise, P., Allocca, G., Sitta, N. & DiStefano, P. Event rates and risk factors in patients with Brugada syndrome and no prior cardiac arrest: a cumulative analysis of the largest available studies distinguishing ICD-recorded fast ventricular arrhythmias and sudden death. Heart Rhythm 11, 252–258 (2014).

    Article  PubMed  Google Scholar 

  76. Andorin, A. et al. Impact of clinical and genetic findings on the management of young patients with Brugada syndrome. Heart Rhythm 13, 1274–1282 (2016).

    Article  PubMed  Google Scholar 

  77. Gonzalez-Corcia, M. et al. Brugada syndrome in the young: assessment of risk factors for future events. Europace (2016).

  78. Conte, G. et al. Follow-up from childhood to adulthood of individuals with family history of Brugada syndrome and normal electrocardiograms. JAMA 312, 2039–2041 (2014).

    Article  PubMed  Google Scholar 

  79. Conte, G. et al. Clinical characteristics, management, and prognosis of elderly patients with Brugada syndrome. J. Cardiovasc. Electrophysiol. 25, 514–519 (2014).

    Article  PubMed  Google Scholar 

  80. Benito, B. et al. Gender differences in clinical manifestations of Brugada syndrome. J. Am. Coll. Cardiol. 52, 1567–1573 (2008).

    Article  PubMed  Google Scholar 

  81. Sacher, F. et al. Are women with severely symptomatic Brugada syndrome different from men? J. Cardiovasc. Electrophysiol. 19, 1181–1185 (2008).

    Article  PubMed  Google Scholar 

  82. Sarkozy, A. et al. The value of a family history of sudden death in patients with diagnostic type I Brugada ECG pattern. Eur. Heart J. 32, 2153–2160 (2011).

    Article  PubMed  Google Scholar 

  83. Hasdemir, C. et al. High prevalence of concealed Brugada syndrome in patients with atrioventricular nodal reentrant tachycardia. Heart Rhythm 12, 1584–1594 (2015).

    Article  PubMed  Google Scholar 

  84. Sommariva, E. et al. Genetics can contribute to the prognosis of Brugada syndrome: a pilot model for risk stratification. Eur. J. Hum. Genet. 21, 911–917 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Meregalli, P. G. et al. Type of SCN5A mutation determines clinical severity and degree of conduction slowing in loss-of-function sodium channelopathies. Heart Rhythm 6, 341–348 (2009).

    Article  PubMed  Google Scholar 

  86. Richter, S. et al. Number of electrocardiogram leads displaying the diagnostic coved-type pattern in Brugada syndrome: a diagnostic consensus criterion to be revised. Eur. Heart J. 31, 1357–1364 (2010).

    Article  PubMed  Google Scholar 

  87. Miyamoto, K. et al. Diagnostic and prognostic value of a type 1 Brugada electrocardiogram at higher (third or second) V1 to V2 recording in men with Brugada syndrome. Am. J. Cardiol. 99, 53–57 (2007).

    Article  PubMed  Google Scholar 

  88. Gottschalk, B. H. et al. Expert cardiologists cannot distinguish between Brugada phenocopy and Brugada syndrome electrocardiogram patterns. Europace 18, 1095–1100 (2016).

    Article  PubMed  Google Scholar 

  89. Calo, L. et al. Am. Coll. Cardiol. 67, 1427–1440 (2016).

    Article  Google Scholar 

  90. Kawata, H. et al. Prognostic significance of early repolarization in inferolateral leads in Brugada patients with documented ventricular fibrillation: a novel risk factor for Brugada syndrome with ventricular fibrillation. Heart Rhythm 10, 1161–1168 (2013).

    Article  PubMed  Google Scholar 

  91. Takagi, M. et al. The prognostic value of early repolarization (J wave) and ST-segment morphology after J wave in Brugada syndrome: multicenter study in Japan. Heart Rhythm 10, 533–539 (2013).

    Article  PubMed  Google Scholar 

  92. Alings M, Wilde A. “Brugada” syndrome: clinical data and suggested pathophysiological mechanism. Circulation 99, 666–673 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Miyazaki, T. et al. Autonomic and antiarrhythmic drug modulation of ST segment elevation in patients with Brugada syndrome. J. Am. Coll. Cardiol. 27, 1061–1070 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Mizumaki, K. et al. Vagal activity modulates spontaneous augmentation of ST elevation in the daily life of patients with Brugada syndrome. J. Cardiovasc. Electrophysiol. 15, 667–673 (2004).

    Article  PubMed  Google Scholar 

  95. Viskin, S., Rosso, R., Friedensohn, L., Havakuk, O. & Wilde, A. A. Everybody has Brugada syndrome until proven otherwise? Heart Rhythm 12, 1595–1598 (2015).

    Article  PubMed  Google Scholar 

  96. Havakuk, O. & Viskin, S. A. A tale of 2 diseases: the history of long-QT syndrome and Brugada syndrome. J. Am. College Cardiol. 67, 100–108 (2016).

    Article  Google Scholar 

  97. Brugada, R. et al. Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation 101, 510–515 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Morita, H. et al. Fragmented QRS as a marker of conduction abnormality and a predictor of prognosis of Brugada syndrome. Circulation 118, 1697–1704 (2008).

    Article  PubMed  Google Scholar 

  99. Okamura, H. et al. Risk stratification in patients with Brugada syndrome without previous cardiac arrest - prognostic value of combined risk factors. Circ. J. 79, 310–317 (2015).

    Article  PubMed  Google Scholar 

  100. Sarkozy, A. et al. Inferior and lateral electrocardiographic repolarization abnormalities in Brugada syndrome. Circ. Arrhythm. Electrophysiol. 2, 154–161 (2009).

    Article  PubMed  Google Scholar 

  101. Kamakura, T. et al. Significance of electrocardiogram recording in high intercostal spaces in patients with early repolarization syndrome. Eur. Heart J. 37, 630–637 (2016).

    Article  PubMed  Google Scholar 

  102. Zumhagen, S. et al. Tpeak-Tend interval and Tpeak-Tend/QT ratio in patients with Brugada syndrome. Europace http://dx.doi.org/10.1093/europace/euw033 (2016).

  103. Castro Hevia, J. et al. Tpeak-Tend and Tpeak-Tend dispersion as risk factors for ventricular tachycardia/ventricular fibrillation in patients with the Brugada syndrome. J. Am. Coll. Cardiol. 47, 1828–1834 (2006).

    Article  PubMed  Google Scholar 

  104. Babai Bigi, M. A., Aslani, A. & Shahrzad, S. aVR sign as a risk factor for life-threatening arrhythmic events in patients with Brugada syndrome. Heart Rhythm 4, 1009–1012 (2007).

    Article  PubMed  Google Scholar 

  105. Uchimura-Makita, Y. et al. Time-domain T-wave alternans is strongly associated with a history of ventricular fibrillation in patients with Brugada syndrome. J. Cardiovasc. Electrophysiol. 25, 1021–1027 (2014).

    Article  PubMed  Google Scholar 

  106. Morita, H. et al. Atrial fibrillation and atrial vulnerability in patients with Brugada syndrome. J. Am. Coll. Cardiol. 40, 1437–1444 (2002).

    Article  PubMed  Google Scholar 

  107. Rodriguez-Manero, M. et al. Prevalence, clinical characteristics and management of atrial fibrillation in patients with Brugada syndrome. Am. J. Cardiol. 111, 362–367 (2013).

    Article  PubMed  Google Scholar 

  108. Giustetto, C. et al. Atrial fibrillation in a large population with Brugada electrocardiographic pattern: prevalence, management, and correlation with prognosis. Heart Rhythm 11, 259–265 (2014).

    Article  PubMed  Google Scholar 

  109. Morita, H. et al. Sinus node function in patients with Brugada-type ECG. Circ. J. 68, 473–476 (2004).

    Article  PubMed  Google Scholar 

  110. Letsas, K. P. et al. Sinus node disease in subjects with type 1 ECG pattern of Brugada syndrome. J. Cardiol. 61, 227–231 (2013).

    Article  PubMed  Google Scholar 

  111. Abe, K. et al. Sodium channelopathy underlying familial sick sinus syndrome with early onset and predominantly male characteristics. Circ. Arrhythm. Electrophysiol. 7, 511–517 (2014).

    Article  PubMed  Google Scholar 

  112. Brugada, P., Geelen, P., Brugada, R., Mont, L. & Brugada, J. Prognostic value of electrophysiologic investigations in Brugada syndrome. J. Cardiovasc. Electrophysiol. 12, 1004–1007 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Eckardt, L. et al. Electrophysiologic investigation in Brugada syndrome; yield of programmed ventricular stimulation at two ventricular sites with up to three premature beats. Eur. Heart J. 23, 1394–1401 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Takigawa, M. et al. Seasonal and circadian distributions of ventricular fibrillation in patients with Brugada syndrome. Heart Rhythm 5, 1523–1527 (2008).

    Article  PubMed  Google Scholar 

  115. Stroker, E., de Asmundis, C., Chierchia, G. B. & Brugada, P. Exercise-related Brugada pattern and monomorphic ventricular tachycardia in a patient with Brugada syndrome: interplay between body temperature, haemodynamics and vagal activity. Eur. Heart J. 37, 655 (2016).

    Article  PubMed  Google Scholar 

  116. Belhassen, B., Glick, A. & Viskin, S. Efficacy of quinidine in high-risk patients with Brugada syndrome. Circulation 110, 1731–1737 (2004).

    Article  PubMed  Google Scholar 

  117. Anguera, I. et al. Shock reduction with long-term quinidine in patients with Brugada syndrome and malignant ventricular arrhythmia episodes. J. Am. Coll. Cardiol. 67, 1653–1654 (2016).

    Article  PubMed  Google Scholar 

  118. Eckardt, L. et al. Long-term prognosis of individuals with right precordial ST-segment-elevation Brugada syndrome. Circulation 111, 257–263 (2005).

    Article  PubMed  Google Scholar 

  119. Takagi, M., Yokoyama, Y., Aonuma, K., Aihara, N. & Hiraoka, M. Clinical characteristics and risk stratification in symptomatic and asymptomatic patients with brugada syndrome: multicenter study in Japan. J. Cardiovasc. Electrophysiol. 18, 1244–1251 (2007).

    Article  PubMed  Google Scholar 

  120. Brugada, J., Brugada, R. & Brugada, P. Determinants of sudden cardiac death in individuals with the electrocardiographic pattern of Brugada syndrome and no previous cardiac arrest. Circulation 108, 3092–3096 (2003).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.S. and G.D. contributed equally to this work. All the authors researched data for the article, substantially contributed to discussion of content, and wrote, reviewed, and edited the manuscript before submission.

Corresponding author

Correspondence to Pedro Brugada.

Ethics declarations

Competing interests

P.B. has received institutional grants from Biotronik, Medtronic, and St. Jude Medical. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sieira, J., Dendramis, G. & Brugada, P. Pathogenesis and management of Brugada syndrome. Nat Rev Cardiol 13, 744–756 (2016). https://doi.org/10.1038/nrcardio.2016.143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing