
An OpenSHMEM Implementation for the
Adapteva Epiphany Coprocessor

James Ross1 and David Richie2

1 U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
james.a.ross176.civ@mail.mil

2 Brown Deer Technology, Forest Hill, MD 21050, USA
drichie@browndeertechnology.com

Abstract. This paper reports the implementation and performance eval-
uation of the OpenSHMEM 1.3 specification for the Adapteva Epiphany
architecture within the Parallella single-board computer. The Epiphany
architecture exhibits massive many-core scalability with a physically
compact 2D array of RISC CPU cores and a fast network-on-chip (NoC).
While fully capable of MPMD execution, the physical topology and
memory-mapped capabilities of the core and network translate well to
Partitioned Global Address Space (PGAS) programming models and
SPMD execution with SHMEM.

Keywords: OpenSHMEM, Network-on-Chip (NoC), Single-Board Com-
puter, Performance Evaluation

1 Introduction and Motivation

The OpenSHMEM communications library is designed for computer platforms
using Partitioned Global Address Space (PGAS) programming models [1]. His-
torically, these were large Cray supercomputers, but now the OpenSHMEM
interface may also be used on commodity clusters. The Adapteva Epiphany
architecture represents a divergence in computer architectures typically used
with OpenSHMEM and is just one of many emerging parallel architectures that
present a challenge in identifying effective programming models to exploit them.
While some researchers may be considering how the OpenSHMEM API may in-
teract with coprocessors, the work presented here leverages the API for device-
level operation. In some aspects, the Epiphany architecture resembles a sym-
metric multiprocessing (SMP) multi-core processor with a shared off-chip global
memory pool. However, each core can directly address the private address space
of neighboring cores across an on-chip 2D mesh network. Thus, the architec-
ture also has the characteristics of a PGAS platform. Previous proof-of-concepts
demonstrated that message passing protocols could achieve good application
performance on the Epiphany architecture [2], [3]. However, it was unclear if
the OpenSHMEM 1.3 standard could be fully implemented within the platform
limitations and achieve high performance using a standard programming model
without resorting to non-standard software extensions.

ar
X

iv
:1

60
8.

03
54

5v
1

 [
cs

.D
C

]
 1

1
A

ug
 2

01
6

2

Existing open source OpenSHMEM implementations are inadequate within
the constraints of the Epiphany architecture, so a new C language implementa-
tion named ARL OpenSHMEM for Epiphany was developed from scratch. The
design emphasizes a reduced memory footprint, high performance, and simplic-
ity, which are often competing goals. This paper discusses the Epiphany architec-
ture in Sect. 2.1, the OpenSHMEM implementation and performance evaluation
in Sect. 3, and a discussion of future work and potential standard extensions for
embedded architectures in Sect. 4.

2 Background

The 16-core Epiphany-III coprocessor is included within the $99 ARM-based
single-board computer and perhaps represents the low-cost end of programmable
hardware suitable for SHMEM research and education. Many universities, stu-
dents, and researchers have purchased the platform with over 10,000 sales to
date. Despite this, programming the platform and achieving high performance
or efficiency remain challenging for many users. Like GPUs, the Xeon Phi, and
other coprocessors, typical applications comprise host code and device code.
Only a minimal set of communication primitives exist within the non-standard
Epiphany Hardware Utility Library (eLib) for multi-core barriers, locks, and
data transfers [4]. The barrier and data transfer routines are not optimized for
low latency. Other primitives within eLib use unconventional 2D row and col-
umn indexing, which cannot easily address arbitrary numbers of working cores or
disabled cores. More complicated collectives, such as those in the OpenSHMEM
specification, are left as an exercise for the application developer.

Although not discussed in detail in this paper, the CO-PRocessing Threads
(COPRTHR) 2.0 SDK [5] further simplifies the execution model to the point
where the host code is significantly simplified, supplemental, and even not re-
quired depending on the use case [6]. There are essentially two modes of possible
execution. The first mode requires host code with explicit Epiphany coproces-
sor offload routines. The second mode uses a host-executable coprocessor pro-
gram with the conventional main routine provided. The program automatically
performs the coprocessor offload without host code. Combined with the work
presented in this paper, the COPRTHR 2.0 SDK enables many OpenSHMEM
applications to execute on the Epiphany coprocessor without any source code
changes. Execution occurs as if the Epiphany coprocessor is the main processor
driving computation. COPRTHR 1.6 was used to present the Threaded MPI
model for Epiphany [2] as well as a number of applications [7], [8].

2.1 Epiphany Architecture

Many modern computer architectures address the “memory wall problem” by in-
cluding increasingly complex cache hierarchies and core complexity, wider mem-
ory buses, memory stacking, and complex packaging to maintain the SMP hard-
ware and software architecture. The Epiphany architecture unwinds decades of

3

these types of changes – it is a cache-less, 2D array of RISC cores with a fast
network-on-chip (NoC) that can an be simply described as a “cluster on a chip”.
Each core within the Epiphany-III architecture contains 32 KB of SRAM which
is shared between instructions and local data. The Epiphany architecture can
scale to one megabyte of SRAM per core, but there is a linear design trade-
off between the number of cores and available memory for a fixed die space.
The core local memory is memory-mapped, and each core may directly access
the local memory of any core within the mesh network. Each core has shared
memory access to off-chip global DRAM, although this access is significantly
slower than local memory or non-uniform memory access (NUMA) to neighbor-
ing core memory. The highest performance and most energy-efficient applications
leverage inter-core communication and on-chip data reuse. Like many high per-
formance computing (HPC) clusters, the inter-core communication is generally
explicit in order to achieve highest performance. The architecture is also scal-
able by tiling multiple chips without additional “glue logic”. The tight coupling
between the core logic and the on-chip mesh network enables very low-latency
operation of OpenSHMEM routines. An architectural overview appears in Fig-
ure 1. Unlike most application programming interfaces for communication, there
is no additional software layer to handle networking for hardware abstraction. As
we will discuss in further detail, the OpenSHMEM implementation for Epiphany
performs network operations directly.

Mesh Node

RISC CPU

DMA
Engine

32 KB Local Memory

Network
Interface

Router

Timers
64-Word Register File

Sequencer

Interrupt Handler

Arithmetic Logic Unit

Floating Point Unit

Fig. 1. The 16-core Epiphany-III architecture is a 2D array of RISC CPU cores. It
contains a 64-word register file, sequencer, interrupt handler, integer and floating point
units, timers, and DMA engines for the fast network-on-chip

4

3 Implementation and Performance Evaluation

Due to the tight memory constraints of the Epiphany memory and availability
of specialized hardware features, the OpenSHMEM reference implementation
built on GASNet was not suitable for deployment on the Epiphany cores. As
a credit to the OpenSHMEM specification and the Adapteva Epiphany archi-
tecture documentation, the full OpenSHMEM 1.3 implementation was written
and optimized over a period of a few weeks. The entire library, including the
optional extensions described in detail later, is approximately 1800 lines of code
and does not require additional software. The software directly targets the un-
derlying hardware features and was designed to be extremely lightweight in order
to compile to small binaries expected with embedded architectures.

Linear scaling algorithms were avoided, and many of the collective routines
use dissemination or recursive doubling algorithms, optimized for low-latency
on the Epiphany network. The remote memory access routines, shmem TYPE put

and shmem TYPE get, use hand-tuned memory-mapped load and store primitives
with a hardware loop feature specific to the Epiphany architecture. The non-
blocking remote memory access routines use the dual-channel Direct Memory
Access (DMA) engine on each processor network node. The distributed locking
and atomic routines leverage an atomic TESTSET instruction that performs an
atomic “test-if-not-zero” and conditional write. An optional hardware barrier
implementation was also developed for a specialized shmem barrier all for ex-
tremely low-latency global barriers. An optional inter-processor interrupt and
corresponding interrupt service routine (ISR) enable faster shmem TYPE get op-
erations by interrupting the remote core to use the optimized shmem TYPE put.

Many of the OpenSHMEM routines have some component that is hardware
accelerated on the Epiphany architecture such as zero-overhead hardware loops
for copying data, memory-mapped loads and stores, the TESTSET instruction
for remote locks and atomics, a wait on AND (WAND) instruction for a low-
latency shmem barrier all. The MULTICAST experimental feature would enable
energy-efficient, low-latency broadcasts but is presently unused. The point-to-
point synchronization routines are among the simplest to implement and do
not have a section dedicated to discussion. Generally, they spin-wait on local
values until they meet the criteria defined by the routine. The memory ordering
routines need only verify that both DMA engines have an idle status by spin-
waiting on the relevant special register. There are no intermediate data copies
in this implementation.

The performance evaluation of the Epiphany OpenSHMEM implementation
began with the OpenSHMEM micro-benchmark codes. The timing code had to
be modified because the gettimeofday routine is only accurate to a microsecond,
and many of the operations operate in the sub-microsecond regime.

Many of the communication routines in the performance evaluation include
the parameters α and β−1 in the figure subtitle along with their standard devi-
ations. These two parameters are from the “α-β model” for communication in
HPC. They neatly summarize the communication time (Tc) to include the la-

5

tency (α) and marginal cost (β) to transfer a message (of size L) in equation 1.
The β−1 parameter is the peak effective core bandwidth for the routine.

Tc = α+ β · L (1)

3.1 Library Setup, Exit, Query Routines

The shmem init routine retrieves or calculates the local processing element (PE)
number (for shmem my pe) and number of PEs (for shmem n pes), configures the
optimized hardware barrier or collective dissemination barrier arrays, obtains
the SHMEM heap memory offset, and precalculates a few other addresses for
improved runtime performance. The shmem ptr routine can directly calculate
remote memory locations using simple logical shift and bitwise operations.

3.2 Memory Management Routines

Memory management on the Epiphany processor is atypical. Each Epiphany-III
core has a flat 32 KB local memory map from address 0x0000 to 0x7fff. Pro-
grams are typically loaded starting at 0x0100 if extremely constrained for mem-
ory, or 0x0400 if using the COPRTHR 2 interface. The stack pointer typically
moves downward from the high address. Data used for the application, including
the SHMEM data heap, begins directly after the program space. Figure 2 shows
the typical memory layout of an Epiphany-III core using the COPRTHR 2 in-
terface as it relates to the PGAS model. The static or global variables that are
typically defined within the application appear below the free local memory ad-
dress within the symmetric heap. They are still symmetrical across all Epiphany
cores as the program binary is identical.

Due to the tight memory constraints, a more modern memory allocator was
not addressed in this work. The basic memory management system calls brk and
sbrk are more suited for controlling the amount of memory allocated from the
SHMEM data heap for each process element because there is no virtual address
abstraction. Instead, there is a local base memory tracking pointer that stores
the current free memory base address and incremented with each allocation. The
memory management routines build on these calls, but care must be taken to
adhere to the following rules:

1. shmem free must be called in the reverse order of allocation if making sub-
sequent allocations

2. shmem realloc can only be used on the last (re)allocated pointer
3. shmem align alignment must be a power of 2 greater than 8 (default is 8)

This is a pragmatic approach that we feel is reasonable and won’t even be
noticed on most codes. Calling shmem free moves the local base memory tracking
pointer to the address in the function argument so most routines only need
to call it once for the first allocated buffer in a series if freeing all memory.
The shmem realloc routine could be designed to copy the contents of the old

6

PE #

Re
m

ot
el

y
Ac

ce
ss

ib
le

Sy

m
m

et
ric

 D
at

a
O

bj
ec

ts

Global/Static
Variables

Symmetric
Heap

Variable: X

Pr
iv

at
e

Da
ta

O

bj
ec

ts Local
Variables

syscore
0x0000

Free Local
Memory

0x0400

usrcore

Stack
0x8000

Typically, application
code is 4-20 KB

Global/Static
Variables

Buffers allocated with malloc,
shmem_malloc, sbrk, etc.

local_mem_base

Stack pointer (sp register)

Fig. 2. The PGAS memory model (left) and the equivalent typical memory layout on
an Epiphany-III core (right)

buffer to the new buffer, however, this would waste the memory space in the
original allocation (a precious commodity on the Epiphany architecture). Future
developments with COPRTHR 2 may address these deficiencies by exporting the
COPRTHR host-side memory management to the coprocessor threads.

3.3 Remote Memory Access Routines

Inter-process memory copying on the Epiphany is trivial, and a simple loop over
incrementing source and destination arrays can be done in C code. However,
like many optimized memcpy routines, high-performance copies are non-trivial.
A high-performance inter-processor memory copy routine does not appear to be
in the eLib library. So after quite some time of hand-tuning in assembly, a put-
optimized method was written that makes use of a “zero-overhead” hardware
loop and four-way unrolled staggered double-word loads and (remote) stores. A
specialization for the edge case of unaligned memory is also included since the
Epiphany architecture requires loads and stores to be memory aligned to the
data size. Assuming the fast path is taken, the core can transfer a double-word
(8 bytes) per clock cycle. However, since the 8 byte load operation requires an
additional cycle, the effective peak network copy is 8 bytes every two clocks.
For a clock rate of 600 MHz, peak contiguous network transfers may achieve
up to 2.4 GB/sec. Having the NoC and core clocks pinned ensures that appli-
cation communication performance scales with the chip clock speed. The same
put-optimized memory copy subroutine is used for get operations. This is sub-
optimal, but remote read operations will never be as high-performance as re-
mote write operations on the Epiphany architecture, so they should generally be
avoided. Remote direct read operations are slower than equivalent remote direct

7

write operations because the read request must first traverse the network to the
receiving core network interface, then the data must traverse the network back
to the requesting core. Unlike a remote direct write operation which can issue
store instructions without a response, the read operation stalls the requesting
core until the load instruction returns data to a register. Issuing multiple re-
quests does little to mitigate this performance issue, thus, the throughput of
the optimized shmem put is approximately an order of magnitude greater than
shmem get as shown in Figure 3.

0.01

0.10

1.00

10.00

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K

0

5

10

15

20

25

30

35

40

La
te

nc
y

(μ
se

c)

C
al

cu
la

te
d

To
ta

l O
n-

C
hi

p
 B

an
dw

id
th

 (
G

B
/s

)

Message Size (bytes)

Epiphany-III OpenSHMEM PutMem Performance
α = 101 ± 3 nsec, β-1= 2.387 ± 0.003 GB/s

Bandwidth
Latency

0.1

1.0

10.0

100.0

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K

0

1

2

3

4

La
te

nc
y

(μ
se

c)

C
al

cu
la

te
d

To
ta

l O
n-

C
hi

p
 B

an
dw

id
th

 (
G

B
/s

)

Message Size (bytes)

Epiphany-III OpenSHMEM GetMem Performance
α = 116 ± 9 nsec, β-1= 0.232 ± 0.001 GB/s

Bandwidth
Latency

0

1

2

3

4

5

6

7

8

9

10

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K

S
pe

ed
up

Message Size (bytes)

OpenSHMEM vs eSDK Copy Speedup (#PEs=16)

Write Speedup
Read Speedup

0.1

1.0

10.0

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K

0

5

10

15

20

25

La
te

nc
y

(μ
se

c)

C
al

cu
la

te
d

To
ta

l O
n-

C
hi

p
 B

an
dw

id
th

 (
G

B
/s

)

Message Size (bytes)

Epiphany-III OpenSHMEM GetMem Inter-Processor Interrupt Performance
α = 310 ± 49 nsec, β-1= 1.508 ± 0.029 GB/s

Bandwidth
Latency

Fig. 3. Performance of optimized shmem put (top left) and shmem get (top right) for
contiguous data exchange operations for 16 processing elements, speedup compari-
son with eLib (bottom left), and experimental inter-processor user interrupt for high-
performance shmem get (bottom right).

In order to address this performance disparity with contiguous remote reads,
an inter-processor interrupt is configured and signaled by the receiving core,
causing an equivalent fast write to be executed. The receiving core is then sig-
naled to continue upon completion of the inter-processor ISR. This is an ex-
perimental feature because it uses the user interrupt and must be enabled with
SHMEM USE IPI GET during compilation. It has the greatest performance impact
for large transfers. The method has a turnover point for buffers larger than 64

8

bytes so that smaller transfers are read directly and larger transfers use the
inter-processor interrupt. All results for contiguous block transfers and a perfor-
mance comparison with the equivalent eLib interface in the eSDK are shown in
Figure 3.

3.4 Non-blocking Remote Memory Access Routines

The set of non-blocking remote memory access routines (shmem put nbi and
shmem get nbi) makes use of the on-chip DMA engine. The DMA engine has
two independent DMA channels per processor node so that two non-blocking
transfers may execute concurrently. Each channel has a separate DMA speci-
fication of the source and destination address configuration. The configuration
is capable of 2D DMA operations with flexible stride sizes. This could support
an extension to the OpenSHMEM 1.3 standard for non-blocking strided remote
memory access routines if needed. The performance results for the non-blocking
remote memory access routines appear in Figure 4.

0.1

1.0

10.0

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K

0

5

10

15

20

25

30

La
te

nc
y

(μ
se

c)

C
al

cu
la

te
d

To
ta

l O
n-

C
hi

p
 B

an
dw

id
th

 (
G

B
/s

)

Message Size (bytes)

Epiphany-III OpenSHMEM Non-Blocking PutMem Performance
α = 305 ± 5 nsec, β-1= 1.445 ± 0.003 GB/s

Bandwidth
Latency

0.1

1.0

10.0

2 4 8 16 32 64 128 256 512 1K 2K 4K 8K

0

5

10

15

20

25

30

La
te

nc
y

(μ
se

c)

C
al

cu
la

te
d

To
ta

l O
n-

C
hi

p
 B

an
dw

id
th

 (
G

B
/s

)

Message Size (bytes)

Epiphany-III OpenSHMEM Non-Blocking PutMem, Dual-Issue Performance
α = 483 ± 10 nsec, β-1= 1.904 ± 0.007 GB/s

Bandwidth
Latency

0.1

1.0

10.0

100.0

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K

0

1

2

3

4

5

La
te

nc
y

(μ
se

c)

C
al

cu
la

te
d

To
ta

l O
n-

C
hi

p
 B

an
dw

id
th

 (
G

B
/s

)

Message Size (bytes)

Epiphany-III OpenSHMEM Non-Blocking GetMem Performance
α = 306 ± 14 nsec, β-1= 0.272 ± 0.002 GB/s

Bandwidth
Latency

0.1

1.0

10.0

100.0

2 4 8 16 32 64 128 256 512 1K 2K 4K 8K

0

1

2

3

4

5

La
te

nc
y

(μ
se

c)

C
al

cu
la

te
d

To
ta

l O
n-

C
hi

p
 B

an
dw

id
th

 (
G

B
/s

)

Message Size (bytes)

Epiphany-III OpenSHMEM Non-Blocking GetMem, Dual-Issue Performance
α = 373 ± 42 nsec, β-1= 0.285 ± 0.005 GB/s

Bandwidth
Latency

Fig. 4. Performance of non-blocking remote memory access routines.

Application performance improvement may be realized for large non-blocking
transfers by splitting transfers into two portions and calling two non-blocking

9

transfers, however, the performance benefit is marginal and often worse. Due
to hardware errata in the Epiphany-III, the DMA engine is throttled to less
than half of the peak bandwidth of 8 bytes per clock, or 4.8 GB/sec [9]. If fully
enabled, as expected in future chips, the DMA engine would be used for the
blocking remote memory access routines rather than remote load/store instruc-
tions. In general, it may be faster to use blocking transfers because the DMA
engine setup overhead is relatively high, and there are often bank conflicts with
the concurrent computation and DMA engine access, hindering fully overlapped
communication and computation. The blocking operation, shmem quiet, spin-
waits on the DMA status register. Alternatively, a DMA ISR could be used to
continue the shmem quiet operation, but it is not clear how this could be higher
performance.

3.5 Atomic Memory Operations

The Epiphany-III ISA does not have support for atomic instructions, but the
TESTSET instruction used for remote locks may be used to define other atomic
operations in software. With the current code design, it is trivial to extend to
other atomic operations with a single line of code if additional atomic operations
are defined by the OpenSHMEM specification in the future. At a core level,
memory access for both fetch and set operations completes in a single clock cycle
and is therefore implicitly atomic. The fetch operation still must traverse the
network to the remote core and return the result. Each data type specialization
uses a different lock on the remote core as per the specification. The performance
results for the 32-bit integer atomic routines appear in Figure 5.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

2 4 6 8 10 12 14 16

La
te

nc
y

(μ
se

c)

Number of Processing Elements

Epiphany-III OpenSHMEM Atomic Operations Performance

cswap (!=)
fadd
add
inc

swap
finc

cswap (==)
fetch

set

Fig. 5. Performance of OpenSHMEM atomic operations for 32-bit integers and a vari-
able number of processing elements. Atomic operations are performed in a tight loop
on the next neighboring processing element.

10

3.6 Collective Routines

Multi-core barriers are critical to performance for many parallel applications.
The Epiphany-III includes hardware support for a fully collective barrier with
the WAND instruction and corresponding ISR. This hardware support is included
as an experimental feature within the OpenSHMEM library and must be enabled
by specifying SHMEM USE WAND BARRIER at compile time. After several implemen-
tations of barrier algorithms, it was determined that a dissemination barrier was
the highest-performing software barrier method. It is not clear if this algorithm
will continue to achieve the highest performance on chip designs with a larger
number of cores; alternative tree algorithms may be needed. The eLib interface
in the eSDK uses a counter-based collective barrier and requires a linearly in-
creasing amount of memory with the number of cores. The dissemination barrier
requires 8 · log2(N) bytes of memory, where N is the number of processing el-
ements within the barrier. The use of this synchronization array mitigates the
need for signaling by locks at each stage of the barrier. The collective eLib bar-
rier completes in 2.0 µsec while the WAND barrier completes in 0.1 µsec. The
performance for group barriers for a subset of the total processing elements is
shown in Figure 6. The latency of the dissemination barrier increases logarithmi-
cally with the number of cores so that more than eight cores take approximately
0.23 µsec.

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

2 4 6 8 10 12 14 16

La
te

nc
y

(μ
se

c)

Number of Processing Elements

Epiphany-III OpenSHMEM Barrier Performance (Dissemination)

Runtime w/ variable #PEs
0.1

1.0

10.0

100.0

8 16 32 64 128 256 512 1K 2K 4K 8K

0

1

2

3

4

5

6

7

8

9

10

La
te

nc
y

(μ
se

c)

C
al

cu
la

te
d

To
ta

l O
n-

C
hi

p
 B

an
dw

id
th

 (
G

B
/s

)

Message Size (bytes)

Epiphany-III OpenSHMEM Broadcast64 Performance (Tree)
α = 416 ± 12 nsec, β-1= 0.598 ± 0.002 GB/s

Bandwidth
Latency

Fig. 6. Performance of shmem barrier for variable number of processing elements (left)
and the performance of shmem broadcast64 for variable message sizes (right)

Broadcasts are important in the context of the Epiphany application devel-
opment in order to limit the replication of off-chip memory accesses to common
memory. It is faster to retrieve off-chip data once and disseminate it to other pro-
cessing elements in an algorithmic manner than for each processing element to
fetch the same off-chip data. The data are distributed with a logical network tree,
moving the data the farthest distance first in order to prevent subsequent stages
increasing on-chip network congestion. The broadcast routines use the same

11

high-performance memory copying subroutine as the contiguous data transfers.
Effective core bandwidth approaches the theoretical peak performance for this
algorithm and is approximately 2.4/log2(N) GB/sec. Figure 6 shows collective
broadcast performance for variable message sizes.

The shmem collect and shmem fcollect routines use ring and recursive
doubling algorithms for concatenating blocks of data from multiple processing
elements. Each uses the optimized contiguous memory copying routine. There
is likely room for improvement with these routines; the measured performance
appears in Figure 7.

1

10

100

8 16 32 64 128 256 512 1K

0

2

4

6

8

10

12

14

16

La
te

nc
y

(μ
se

c)

C
al

cu
la

te
d

To
ta

l O
n-

C
hi

p
 B

an
dw

id
th

 (
G

B
/s

)

Message Size (bytes)

Epiphany-III OpenSHMEM Collect64 Performance (Ring)
α = 2135 ± 35 nsec, β-1= 1.127 ± 0.006 GB/s

Bandwidth
Latency

1.0

10.0

100.0

8 16 32 64 128 256 512 1K

0

2

4

6

8

10

12

14

16

18

La
te

nc
y

(μ
se

c)

C
al

cu
la

te
d

To
ta

l O
n-

C
hi

p
 B

an
dw

id
th

 (
G

B
/s

)

Message Size (bytes)

Epiphany-III OpenSHMEM Fcollect64 Performance (Recursive Doubling)
α = 1140 ± 45 nsec, β-1= 1.208 ± 0.008 GB/s

Bandwidth
Latency

Fig. 7. Performance of linear scaling shmem collect64 and recursive doubling
shmem fcollect64 for variable message sizes on 16 processing elements

The shmem TYPE OP to all reduction routines are important for many multi-
core applications. The routines use different algorithms depending on the num-
ber of processing elements. A ring algorithm is used for processing elements that
number in non-powers of two and a dissemination algorithm for powers of two.
The symmetric work array is used for temporary storage and the symmetric syn-
chronization array is used for multi-core locks and signaling. The performance
of shmem int sum to all appears in Figure 8. Other routines vary marginally
in performance due to data types and the arithmetic operation used. Reductions
that fit within the symmetric work array have improved latency as seen in the
figure.

The performance of the contiguous all-to-all data exchange, shmem alltoall,
appears in Figure 9. This routine has a relatively high overhead latency compared
to other collectives.

3.7 Distributed Locking Routines

The distributed locking routines, shmem set lock and shmem test lock, are
easily supported by the atomic TESTSET instruction. The actual lock address
is defined in the implementation to be on the first processing element. These

12

1

10

100

1000

4 8 16 32 64 128 256 512 1K 2K 4K 8K

0

2

4

6

8

10

12

14

La
te

nc
y

(μ
se

c)

R
ed

uc
tio

n
s/

se
c

(m
ill

io
ns

)

Message Size (bytes)

Epiphany-III OpenSHMEM Reduction Performance (#PEs=16)

Reductions/sec (millions)
Latency

Fig. 8. Reduction performance for shmem int sum to all for all 16 processing ele-
ments. The latency and the number of collective reductions per second are shown.
The effect of the minimum symmetric work array size for reductions, defined as
SHMEM REDUCE MIN WRKDATA SIZE per the OpenSHMEM specification, is apparent for
small reductions

1.0

10.0

8 16 32 64 128 256 512

0

5

10

15

20

25

La
te

nc
y

(μ
se

c)

C
al

cu
la

te
d

To
ta

l O
n-

C
hi

p
 B

an
dw

id
th

 (
G

B
/s

)

Message Size (bytes)

Epiphany-III OpenSHMEM AlltoAll64 Performance (Ring)
α = 2077 ± 92 nsec, β-1= 2.118 ± 0.054 GB/s

Bandwidth
Latency

Fig. 9. Performance of the new (to version 1.3) contiguous all-to-all data exchange
operation, shmem alltoall, for 16 processing elements

13

locking mechanisms are also the basis for the atomic operations detailed in Sect.
3.5 but for multiple processing elements. The shmem clear lock routine is a
simple remote write to free the lock. Although this scheme works well for the 16
processing elements on the Epiphany-III, the performance bottleneck will likely
be a problem scaling to much larger core counts. Application developers should
avoid using these global locks.

4 Future Work and Discussion of Extensions for
Embedded Architectures

It is our intention to release ARL OpenSHMEM for Epiphany, as well as the per-
formance evaluation codes and benchmarks used in this paper, as open source
software through the U.S. Army Research Laboratory’s GitHub account [10] for
Parallella community input and further development. The Epiphany architecture
may also be updated in the future to add more hardware support for many of the
existing OpenSHMEM routines. Many of the currently proposed OpenSHMEM
extensions and updates should be addressable. A non-blocking strided remote
memory access routine could be supported with the existing DMA engine as
mentioned in Sect. 3.4. Some other extensions do not make sense for the architec-
ture. For example, Epiphany is not a multithreaded architecture and, although
it can be performed via software, is not the ideal mechanism for improving per-
formance. The OpenSHMEM standard should remain sufficiently lightweight to
address low-level operations without relying on specific architectural features.

One of the more challenging portions of the OpenSHMEM standard for
the Epiphany architecture and other embedded architectures are the memory
management routines. It makes some sense for some platforms to have a pre-
allocated symmetric heap from which memory allocations will be made. Within
an Epiphany local core, there is no memory virtualization between the physical
address and the memory address returned by the allocation routines as avail-
able memory is linearly removed from the symmetric heap. The limitations of the
available core space make it challenging to introduce a Linux-like abstract model
of virtual memory. As OpenSHMEM is a low-level interface and application de-
velopers are already accustomed to explicitly managing memory, it may make
some sense to improve memory management interfaces, such as those discussed
in Sect. 3.2, for embedded architectures.

5 Conclusion

OpenSHMEM provided an effective and pragmatic programming model for the
Epiphany architecture. The header-only implementation enabled compiler op-
timizations for program size and application performance that is difficult to
achieve using a standard pre-compiled library. We demonstrated improved per-
formance and many useful features compared to the current eLib library despite
the additional software abstraction with the OpenSHMEM interface. The ARL

14

OpenSHMEM for Epiphany demonstrated high-performance execution while ap-
proaching hardware theoretical networking limits, and low-latency operation for
many of the OpenSHMEM routines.

References

1. Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff Kuehn,
Chuck Koelbel, and Lauren Smith. Introducing OpenSHMEM: SHMEM for the
PGAS Community. In Proceedings of the Fourth Conference on Partitioned Global
Address Space Programming Model, PGAS ’10, pages 2:1–2:3, New York, NY, USA,
2010. ACM.

2. David Richie, James Ross, Song Park, and Dale Shires. Threaded MPI Program-
ming Model for the Epiphany RISC Array Processor. Journal of Computational
Science, 9:94 – 100, 2015. Computational Science at the Gates of Nature.

3. James Ross and David Richie. Implementing OpenSHMEM for the Adapteva
Epiphany RISC Array Processor. Procedia Computer Science, 80:2353 – 2356,
2016. International Conference on Computational Science 2016, ICCS 2016, 6-8
June 2016, San Diego, California, USA.

4. GitHub - adapteva/epiphany-libs: Epiphany runtime libraries and utilities. https:
//github.com/adapteva/epiphany-libs. Accessed: 2016-05-24.

5. COPRTHR-2 Epiphany/Parallella Developer Resources. http://www.

browndeertechnology.com/resources_epiphany_developer_coprthr2.htm.
Accessed: 2016-07-01.

6. David Richie and James Ross. Advances in Run-Time Performance and Inter-
operability for the Adapteva Epiphany Coprocessor. Procedia Computer Science,
80:1531 – 1541, 2016. International Conference on Computational Science 2016,
ICCS 2016, 6-8 June 2016, San Diego, California, USA.

7. James A. Ross, David A. Richie, and Song J. Park. Implementing Image Processing
Algorithms for the Epiphany Many-Core Coprocessor with Threaded MPI. IEEE,
September 2015.

8. James A. Ross, David A. Richie, Song J. Park, and Dale R. Shires. Parallel Pro-
gramming Model for the Epiphany Many-Core Coprocessor Using Threaded MPI.
Microprocessors and Microsystems, 2016.

9. Adapteva, Inc. E16G301 EpiphanyTM16-Core Microprocessor Datasheet, June
2013. Rev 14.03.11.

10. US Army Research Laboratory - GitHub. https://github.com/

USArmyResearchLab. Accessed: 2016-05-24.

https://github.com/adapteva/epiphany-libs
https://github.com/adapteva/epiphany-libs
http://www.browndeertechnology.com/resources_epiphany_developer_coprthr2.htm
http://www.browndeertechnology.com/resources_epiphany_developer_coprthr2.htm
https://github.com/USArmyResearchLab
https://github.com/USArmyResearchLab

	An OpenSHMEM Implementation for the Adapteva Epiphany Coprocessor
	1 Introduction and Motivation
	2 Background
	2.1 Epiphany Architecture

	3 Implementation and Performance Evaluation
	3.1 Library Setup, Exit, Query Routines
	3.2 Memory Management Routines
	3.3 Remote Memory Access Routines
	3.4 Non-blocking Remote Memory Access Routines
	3.5 Atomic Memory Operations
	3.6 Collective Routines
	3.7 Distributed Locking Routines

	4 Future Work and Discussion of Extensions for Embedded Architectures
	5 Conclusion

