EUROPEAN RESPIRATORY journal

Early View

Original article

Gene expression and in situ protein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue

Jennifer A. Aguiar, Benjamin J-M. Tremblay, Michael J. Mansfield, Owen Woody, Briallen Lobb, Arinjay Banerjee, Abiram Chandiramohan, Nicholas Tiessen, Quynh Cao, Anna Dvorkin-Gheva, Spencer Revill, Matthew S. Miller, Christopher Carlsten, Louise Organ, Chitra Joseph, Alison John, Paul Hanson, Richard Austin, Bruce M. McManus, Gisli Jenkins, Karen Mossman, Kjetil Ask, Andrew C. Doxey, Jeremy A. Hirota

Please cite this article as: Aguiar JA, Tremblay BJ-M, Mansfield MJ, et al. Gene expression and in situ protein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue. Eur Respir J 2020; in press (https://doi.org/10.1183/13993003.01123-2020).

This manuscript has recently been accepted for publication in the European Respiratory Journal. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJ online.

Gene expression and in situ protein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue

Jennifer A. Aguiar ${ }^{1}$, Benjamin J-M. Tremblay ${ }^{1}$, Michael J. Mansfield ${ }^{2}$, Owen Woody ${ }^{3}$, Briallen Lobb 1, Arinjay Banerjee ${ }^{4}$, Abiram Chandiramohan ${ }^{5}$, Nicholas Tiessen ${ }^{5}$, Quynh Cao^{5}, Anna Dvorkin-Gheva ${ }^{4}$, Spencer Revill ${ }^{5}$, Matthew S. Miller ${ }^{4,6,7}$, Christopher Carlsten ${ }^{8}$, Louise Organ ${ }^{9}$, Chitra Joseph ${ }^{9}$, Alison John ${ }^{9}$, Paul Hanson ${ }^{10}$, Richard Austin ${ }^{11}$, Bruce M. McManus ${ }^{10}$, Gisli Jenkins ${ }^{9}$, Karen Mossman ${ }^{4}$, Kjetil Ask ${ }^{4,5}$, Andrew C. Doxey ${ }^{1,5^{*}}$, and Jeremy A. Hirota ${ }^{1,4,5,6^{*}}$

1: Department of Biology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
2: Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan

3: Faculty of Mathematics, Waterloo, Waterloo, Ontario, Canada, N2L 3G1
4: McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada, L8S 4K1

5: \quad Firestone Institute for Respiratory Health - Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada, L8N 4A6

6: Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada, L8S 4K1

7: Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada, L8S 4K1

8: Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada, V6H 3Z6

9: \quad Nottingham NIHR Biomedical Research Centre, Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom, NG5 1PB

10: Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada. V6Z 1 Y6

11: Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada, L8N 4A6

* Corresponding Authors:

Jeremy Hirota, PhD
Firestone Institute for Respiratory Health - Division of Respirology, Department of
Medicine, McMaster University, Hamilton, Ontario, Canada, L8N 4A6
Phone: 905-518-0745
Email: hirotaja@mcmaster.ca

Andrew Doxey, PhD
Department of Biology
University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
Phone: 519-888-4567, ext. 33889
Email: acdoxey@uwaterloo.ca

Funding: This work was supported by start-up funds from Hirota JA and a CIHR grant from Mossman K. Hirota JA is supported by the Canada Research Chairs program and an Ontario Early Researcher Award. Doxey AC is supported by NSERC and an Ontario Early Researcher Award.

ABSTRACT (246 words):

In December 2019, SARS-CoV-2 emerged causing the COVID-19 pandemic. SARS-CoV, the agent responsible for the 2003 SARS outbreak, utilizes ACE2 and TMPRSS2 host molecules for viral entry. ACE2 and TMPRSS2 have recently been implicated in SARS-CoV-2 viral infection. Additional host molecules including ADAM17, cathepsin L, CD147, and GRP78 may also function as receptors for SARS-CoV-2.

To determine the expression and in situ localization of candidate SARS-CoV-2 receptors in the respiratory mucosa, we analyzed gene expression datasets from airway epithelial cells of 515 healthy subjects, gene promoter activity analysis using the FANTOM5 dataset containing 120 distinct sample types, single cell RNA sequencing (scRNAseq) of 10 healthy subjects, proteomic datasets, immunoblots on multiple airway epithelial cell types, and immunohistochemistry on 98 human lung samples.

We demonstrate absent to low ACE2 promoter activity in a variety of lung epithelial cell samples and low ACE2 gene expression in both microarray and scRNAseq datasets of epithelial cell populations. Consistent with gene expression, rare ACE2 protein expression was observed in the airway epithelium and alveoli of human lung, confirmed with proteomics. We present confirmatory evidence for the presence of TMPRSS2, CD147, and GRP78 protein in vitro in airway epithelial cells and confirm broad in situ protein expression of CD147 and GRP78 in the respiratory mucosa.

Collectively, our data suggest the presence of a mechanism dynamically regulating ACE2 expression in human lung, perhaps in periods of SARS-CoV-2 infection, and also suggest that alternate receptors for SARS-CoV-2 exist to facilitate initial host cell infection.

INTRODUCTION:

In 2003, the severe acute respiratory syndrome (SARS) outbreak caused by the SARS coronavirus (CoV) resulted in 8096 probable cases with 774 confirmed deaths[1, 2] In patients with SARS, deaths were attributed to acute respiratory distress associated with diffuse bilateral pneumonia and alveolar damage[3]. In December 2019, SARS-CoV-2 emerged causing the COVID-19 pandemic. SARS-CoV-2 is spreading at a much more rapid rate than SARS-CoV [46]. Similar clinical reports of diffuse bilateral pneumonia and alveolar damage have been reported[7-9]. Severe cases of SARS-CoV-2 have been associated with infections of the lower respiratory tract with detection of the virus throughout this tissue as well as the upper respiratory tract[7-9]. The biological mechanisms that may govern differences in the number of SARS and COVID-19 cases remain undefined. It is possible that SARS-CoV-2 possesses distinct molecular mechanisms that impact the virulence through viral proteins, greater susceptibility of host cells to infection, permissivity of host cells to virus replication, or some combination of these and other potentially unknown factors[10-13]. Understanding SARS and SARS-CoV-2 virus similarities and differences at the molecular level in the host may provide insights into transmission, pathogenesis, and interventions.

The seminal report identifying the receptor for SARS-CoV used a HEK293 cell overexpression system to identify angiotensin-converting enzyme 2 (ACE2) as a receptor by coimmunoprecipitation with SARS-CoV spike domain 1[14]. Subsequently, spike protein of SARSCoV was identified as the viral interacting partner of ACE2. Host protease activity by TMPRSS2 facilitates ACE2 ectodomain cleavage and fusion of SARS-CoV membrane with host cell membrane[15-17]. ADAM17 has also been demonstrated to cleave ACE2 ectodomain, but this was not required for SARS CoV infection[18-20]. Mechanisms of SARS CoV entry distinct from ACE2 have also been reported and include activation by endosomal cathepsin L and cell surface expression of CD147 or GRP78[21-23] Each of these receptors were mechanistically interrogated and suggest that SARS CoV could initiate host cell entry and infection using
multiple mechanisms. Recent in vitro reports have demonstrated that similar host proteins are involved in facilitating cell entry by SARS-CoV-2, such as ACE2 and TMPRSS2[5, 24] Biophysical and structural evidence strongly support an interaction of ACE2 with SARS-CoV-2 spike protein, similar to SARS-CoV spike protein[12, 13]. Molecular docking studies have also suggested that SARS-CoV-2 spike protein can interact with cell-surface GRP78[25]. Indirect evidence for a role of CD147 in SARS-CoV-2 binding has been demonstrated in vitro with the use of an anti-CD147 intervention that prevented virus replication[26]. Furthermore, a clinical study with an anti-CD147 intervention reduced symptoms and duration of hospital admission for COVID-19 patients[27]. In summary, although there is evidence that SARS-CoV-2 and SARSCoV both utilize ACE2 as a receptor to facilitate virus entry, it is possible that differences in host-entry mechanisms play a role in the large epidemiological differences between the two viruses, which may include additional unidentified receptors.

ACE2 and TMPRSS2 were identified as cellular entry determinants for SARS-CoV using mechanistic studies. The original report of in situ human lung ACE2 expression described positive immunohistochemical staining for alveoli and airway epithelial cells, and immunocytochemical staining in A549 type II alveolar epithelial cells[28]. ACE2 protein expression is also present in the human lung adenocarcinoma cell line, Calu-3[29]. Similar to ACE2, the original report describing the expression of TMPRSS2 in human respiratory mucosa described expression in airway epithelium and type II alveolar epithelial cells[30]. The specificity of the ACE2 and TMPRSS2 antibodies used for analysis of expression patterns in human lung tissues remains to be addressed.

To address the uncertainties related to SARS-CoV-2 receptors in human lung, we performed gene expression and in situ protein profiling of candidate receptors in human airway epithelial cells and lung tissue. Our computational analysis used publicly available microarray gene expression datasets from airway epithelial cells of 515 unique subjects, single cell sequencing data from 10 subjects, and the FANTOM5 dataset for promoter activities of 74 lung-
related cell and tissue types. Our proteomic analysis used data from the Human Proteome Map[31] and a dataset from primary human airway epithelial cells grown under air-liquid interface culture conditions[32]. For our in situ protein profiling, we performed immunohistochemical analysis of 98 human lung tissue samples. To determine antibody specificity, we performed immunoblots on protein isolated from Calu-3 cells, primary human airway epithelial cells, primary type II alveolar epithelial cells, the human bronchial epithelium cell (HBEC)-6KT cell line, the A549 type II alveolar epithelial cell line, and HEK cells. Collectively our data contrast previous reports, demonstrating rare ACE2 protein expression in the airway epithelium and alveoli of human lung. Our protein expression data are consistent with low ACE2 promoter activity in a variety of lung epithelial cell samples and low ACE2 gene expression in both microarray and single cell RNA sequencing (scRNAseq) datasets. We present confirmatory evidence for the presence of TMPRSS2, CD147, and GRP78 protein in vitro in airway epithelial cells and confirm broad in situ protein expression of CD147 and GRP78 in the respiratory mucosa. Our data suggest that the presence of a mechanism dynamically regulating ACE2 expression in human lung, perhaps in periods of SARS-CoV-2 infection and/or that alternate receptors for SARS-CoV-2 exist to facilitate initial host cell infection in lung tissue.

METHODS:

Human ethics: Procurement of primary human airway epithelial cells used for immunoblots and lung tissue for immunohistochemistry was approved by Hamilton integrated Research Ethics Board (HiREB 5099T, 5305T, 11-3559 and 13-523-C). UBC Research Ethics Office approved heart tissue archives and primary human airway epithelial cell collection.

Upper and lower airway gene expression analysis: Public microarray experiments using Affymetrix chips (HuGene-1.0-st-v1 and HG-U133 Plus 2) on airway epithelial cell samples collected from nasal (GSE19190) or bronchial (GSE11906) brushings of healthy, non-smokers were obtained from the NCBI Gene Expression Omnibus (GEO) database [33, 34]. This resulted in a total of 80 individual samples from the two different experiments which includes 11 upper airway samples (Nasal: 11) and 69 lower airway samples (Trachea: 17, Large Airway: 17, Small Airway: 35). For all dataset samples, raw intensity values and annotation data were downloaded using the GEOquery R package (version 2.52.0)[35] from the Bioconductor project [36]. Probe definition files were downloaded from Bioconductor and probes were annotated using Bioconductor's annotate package. All gene expression data were unified into a single dataset that was then RMA-normalized, and only genes present in both of the Affymetrix platforms ($\mathrm{N}=16,013$) were kept for subsequent analyses. Correction of experiment-specific batch effects was performed using the ComBat method[37] implemented using the sva R package (version 3.32.1)[38]. RMA-normalized expression levels for conventional (ACE2, TMPRSS2, ADAM17, and CTSL) and non-conventional (CD147, and GRP78) SARS-CoV-2 receptor genes were compared across the four defined airway levels, with CDH1 expression level included as a positive control with known expression in lung tissue. Gene expression levels were tested for significant differences via pairwise Wilcoxon rank sum tests with Benjamini-Hochberg multiple testing correction using the stats R package (version 3.6.1). Gene expression box plots were generated with the ggplot2 R package (version 3.2.1).

Analysis of Curated Bronchial Epithelial Cell Brushing Dataset:

A total of 1,859 public microarray experiments using Affymetrix chips (HG-U133 Plus 2 and HuGene-1.0-st-v1) on airway epithelial cell samples were selected from the NCBI GEO database. These samples were further filtered by removing individuals with asthma or COPD, resulting in a total of 504 individual healthy samples (GSE4302, 28 samples; GSE67472, 43 samples; GSE37147, 159 samples; GSE108134, 274 samples). Within this dataset, sex and age information was included for 310 samples with 86 females/106 males. Smoking status information was also provided for 451 samples with 260 current smokers, 82 former smokers, and 109 never smokers.

For all dataset samples, raw intensity values and annotation data were downloaded as described above. Probe definition files were retrieved as described above. All gene expression data were unified into a single dataset that was then RMA-normalized, and only genes present in both of the Affymetrix platforms $(\mathrm{N}=16,105)$ were kept for subsequent analyses. Correction of experiment-specific batch effects was performed as described above.

Analysis of promoter activity from the FANTOM5 dataset: The FANTOM5 promoterome dataset[39] for the hg38 assembly[40] was used to examine promoter activity of SARS-CoV-2related human genes, namely ACE2, TMPRSS2, ADAM17, CTSL (cathepsin L1), CD147 and GRP78. Using the ZENBU genome browser[41], the nearest cap analysis of gene expression (CAGE) peak upstream and on the same strand as each of the aforementioned genes was extracted and analyzed. The dataset consists of CAGE promoter activity data for 1,886 primary cells, cell lines, and tissues from humans, and quantified as normalized transcripts per million (TPM). A subset of FANTOM5 CAGE data (120 samples) is presented considering only samples related to lung, gut, heart, and prostate tissues (consisting of 74, 19, 15, and 12 samples, respectively). Normalized TPM values for each CAGE peak, an approximation for promoter activity, were $\log _{10}$ transformed and separated according to tissue and cell type, and the radius of each point is proportional to these transformed normalized TPM values.

Analysis of protein abundance from proteomic datasets: Publicly available human proteomic data from Kim et al [31] and Foster et al [32] datasets were used to evaluate SARS-CoV-2 receptor-related protein expression in different human tissues and experimental conditions. Expression values were extracted from the Kim et al. dataset for ACE2, TMPRSS2, ADAM17, CTSL (cathepsin L1), BSG (CD147), HSPA5 (GRP78), using CDH1 as a control for airway cells. Data were created using the pheatmap package in R (version 1.0.12) and expressed as log10transformed to facilitate visualization. Proteomic data from the Foster et al. dataset consists of bronchial epithelial cells collected from healthy, non-smokers ($\mathrm{N}=4$; male) and exposed to phosphate-buffered saline control vehicle. Intensity values for ACE2, TMPRSS2, ADAM17, CD147, and GRP78 were extracted with CDH1 included as a positive control. Intensity values were determined by the original study authors via normalization of all detected peptide intensities associated with a given parent protein [32]. Box plots were generated with the ggplot2 R package (version 3.2.1) with intensity values log10-transformed for visualization purposes.

Analysis of single cell RNA sequencing (scRNAseq) data: Data preprocessed using the Cell Ranger pipeline (10x Genomics) were obtained from GSE135893. Samples from 10 control subjects and 12 IPF patients were downloaded and post-processed with Seurat package in $\mathrm{R}[42]$. Cell populations were defined using the markers provided in the source paper[43]. Cells belonging to the 10 control subjects were used for further analysis. Visualizations of violin plots were created using Seurat.

Primary Human Airway Epithelial Cells: The human lung adenocarcinoma cell line, Calu-3, was grown under culture conditions defined by the supplier (ATCC-HTB-55). Primary human airway epithelial cells isolated via bronchial brushings from consented healthy individuals were grown in PneumaCult ExPlus (Stemcell Technologies, Vancouver Canada) under submerged monolayer culture conditions and used in between passage 1 and 4 . The human bronchial epithelial cell line, HBEC-6KT, was grown under submerged monolayer culture conditions in
keratinocyte serum free media supplemented with epidermal growth factor ($0.4 \mathrm{ng} / \mathrm{ml}$) and bovine pituitary extract ($50 \mu \mathrm{~g} / \mathrm{ml})[44-47]$.

Immunoblots: Cell protein was isolated using RIPA lysis buffer (VWR, Ontario, Canada) supplemented with protease inhibitor cocktail (Sigma, Ontario, Canada) with quantification performed using Bradford assay reagents (Bio Rad, Ontario, Canada). Immunoblots were performed using stain free 4-20\% pre-cast gradient gels and imaged on a ChemiDoc XRS+ Imaging system (Bio Rad, Ontario, Canada). For each immunoblot, $20 \mu \mathrm{~g}$ of protein was added per lane. ACE2 (R\&D Systems - MAB933 - Monoclonal - Clone 171606 - $2 \mu \mathrm{~g} / \mathrm{ml}$), TMPRSS2 (Atlas Antibodies - HPA035787 - Polyclonal - $0.4 \mu \mathrm{~g} / \mathrm{ml}$), CD147 (Abcam - ab666 - Monoclonal - Clone MEM-M6/1-1 $\mu \mathrm{g} / \mathrm{ml}$), and GRP78 (BD - 610979 - Monoclonal - Clone - 40/BiP $0.25 \mu \mathrm{~g} / \mathrm{ml}$ and Atlas Antibodies - HPA038845 - Rabbit Polyclonal) primary antibodies were diluted in 5\% skim milk/Tris buffered saline with 0.1% Tween-20 and incubated overnight on a rocker at $4^{\circ} \mathrm{C}$ with detection performed the following day using an anti-mouse-HRP (ACE2, CD147, GRP78 - BD) or anti-rabbit-HRP (TMPRSS2, GRP78 - Atlas) conjugated secondary antibodies at 1:3000 for 2hrs at room temperature (Cell Signaling, Danvers, MA, USA). Visualization of TMPRSS2, CD147, and GRP78 was performed using was performed using Clarity ${ }^{\text {TM }}$ Western enhanced chemiluminescence (ECL) Substrate, while ACE2 was visualized with Clarity Max ${ }^{\text {TM }}$ ECL Substrate (Bio Rad, Ontario Canada). Total protein loading images were collected as a qualitative visualization of protein loading between sample types[48]. The immunogen for ACE2 primary antibody is mouse myeloma cell line NSO-derived recombinant human ACE2 Gln18-Ser740 (predicted). The immunogen for TMPRSS2 primary antibody is the recombinant protein epitope signature tag antigen sequence, GSPPAIGPYYENHGYQPENPYPAQPTVVPTVYEVHPAQYYPSPVPQYAPRVLTQASNPVVCT QPKSPSGTVCTSKT. The immunogen for the CD147 primary antibody is recombinant fulllength protein corresponding to human CD147. The immunogen for the GRP78-BD primary
antibody is human BiP/GRP78 amino acids 525-628. The immunogen for the GRP78 - Atlas primary antibody is the recombinant protein epitope signature tag antigen sequence, EKFAEEDKKLKERIDTRNELESYAYSLKNQIGDKEKLGGKLSSEDKETME KAVEEKIEWLESHQDADIEDFKAKKKELEEIVQPIISKL.

Independent immunoblot analysis (L.O, C.J. A.J. and G.J) were performed on A549, HEK, and immortalized human bronchial epithelial cells. Equal amounts of protein $(20 \mu \mathrm{~g})$ were loaded on to $4-12 \%$, Bis-Tris gradient gels (ThermoFisher, NP0326BOX) with anti-ACE2 (Abcam - ab108252 - Rabbit monoclonal - Clone EPR4435(2) - 1/500 dilution of stock antibody). A loading control of GAPDH was used to demonstrate protein loading (Abcam ab181603 - Rabbit monoclonal - EPR16884-1/10000 dilution of stock antibody). Visualization was performed with ECL Clarity (Biorad, UK) on a Licor C-DiGit.

Immunohistochemistry: Formalin-fixed paraffin-embedded human lung tissue from non-diseased regions were obtained from archived tissue blocks from patients who had undergone lung resection for clinical care. Human heart tissue was from the UBC Cardiovascular Tissue Registry. Four-micron thick sections were cut and stained for ACE2 $(15 \mu \mathrm{~g} / \mathrm{ml})$, TMPRSS2 $(10 \mu \mathrm{~g} / \mathrm{ml})$, CD147 $(5 \mu \mathrm{~g} / \mathrm{ml})$, and GRP78 (HPA038845-1/200 dilution) using the same antibodies used for immunoblot analysis. All staining was performed on a Leica Bond RX system with Leica Bond reagents, heat-induced antigen retrieval in at pH 6 (20 minutes) with primary antibody incubation for 20 minutes. Digital slide scanning was performed using an Olympus VS120-L100 Virtual Slide System at 40X magnification with VS-ASW-L100 V2.9 software and a VC50 colour camera followed by image visualization with HALO image analysis software.

RESULTS:

Candidate genes important in SARS-CoV-2 infection are detectable at varying levels in human airway epithelial cells and lung tissue

We performed a targeted analysis of ACE2, TMPRSS2, ADAM17, CTSL, CD147, and GRP78 gene expression as candidates important for SARS-CoV-2 infection in human airway epithelial cells. Here and throughout gene expression analyses, CDH1 (E-cadherin) was used as a control for lung epithelial cell phenotype. We first examined these genes in a curated dataset of upper and lower airway epithelial cell gene expression from the nasal sinus to the $12^{\text {th }}$ generation of airway in the lung (Figure 1A).

In the upper airways, all candidates were expressed with the highest levels observed for GRP78 and the lowest level observed for ACE2. Analysis along multiple generations of the lower airways (trachea, large ($4-6^{\text {th }}$ generation), and small airways (10-12 th generation) revealed identical relative expression patterns with ACE2 being the least expressed and GRP78 being the highest expressed. ACE2 gene expression showed the greatest variability along the upper and lower airways, with greatest expression observed in the trachea samples and the lowest expression in the small airway (Figure 1B).

Following our observation of consistent expression along the upper and lower airways of candidate genes important in SARS-CoV, we determined if sex or age impacted gene expression levels in healthy individuals using a curated dataset of bronchial brushings from 504 healthy subjects (Supplement Table 1). The expression levels for the candidate genes in healthy subjects paralleled the patterns observed in the smaller survey of upper airways, trachea, large, and small airways (Figure 2). Median ACE2 gene expression was the lowest, while GRP78 gene expression was the highest (Figure 2A). No gene candidate demonstrated sex dependence for expression levels (Figure 2B). ACE2, TMPRSS2, CD147, and GRP78 were elevated in current smokers relative to never smokers (Figure 2C - Statistics in Supplement Table 2). CTSL was reduced in current smokers relative to never smokers. No
microarray chip dependent effects were observed for relationships between sex or smoking status and gene expression. For quantitative analyses related to age and gene expression our curated database was divided into datasets that used either the HG-U133 Plus 2 or HuGene-$1.0-\mathrm{st}-\mathrm{v} 1$ microarray due to differences in age distributions. In the HuGene-1.0-st-v1dataset ($\mathrm{n}=181$) which included a greater proportion of older (>50) individuals, we observed reduced ACE2 gene expression with age (Figure 2D, $p<0.05$).

Promoter activity data of each of the candidate genes important in SARS-CoV-2 binding and infection were extracted and analyzed from the FANTOM5 dataset, which includes 1,886 primary cells, cell lines, and tissue sample types (Figure 3). We selected all samples formats that included "lung", "nasal", "airway", "olfactory" to identify lung-specific sample types. Gut, heart, and prostate tissue samples were analyzed as controls. Consistent with our observed gene expression analysis along the upper and lower airways, normalized TPM values for each CAGE peak demonstrate that CD147 promoter activity was elevated relative to ACE2 promoter activity across airway epithelial cells and lung tissue samples. Cathepsin L promoter activity was the lowest of all candidate genes, which contrasted the modest expression observed at the gene level (Figure 2A). Both microarray gene expression analysis and promoter activity were consistent with results of candidate gene expression in a scRNAseq dataset of 10 healthy subjects (Supplementary Figure 1).

Collectively, our gene expression analysis of the upper and lower airways of healthy males and females of diverse ages suggests that ACE2 gene expression is low relative to all other candidate SARS-CoV-2 receptor genes analyzed in human airway epithelial cells. Furthermore, we observe no sex-dependent or age-dependent expression patterns of any candidates at the gene level, although smoking status impacted gene expression levels.

In vitro and in situ protein profiling reveals distinct expression patterns for candidates important in SARS-CoV-2 infection

Analysis of transcriptional data may not be indicative of in situ protein expression levels[49]. To extend our gene expression observations, we mined publicly available proteomic data from whole lung and primary human airway epithelial cell cultures and performed in vitro immunoblots on human airway epithelial cell lysates and in situ protein immunohistochemistry on human lung tissue using the same antibodies for each method.

The Human Proteome Map is a publicly available resource that includes select adult and fetal tissues and circulating immune cell populations[31]. Using this resource, we examined protein expression of ACE2, TMPRSS2, ADAM17, CTSL, CD147, and GRP78. In human lung tissue homogenate, ACE2 was not detected, while being detected in heart, gut, and testes, known positive control tissues (Figure 4A). The rank order of the remaining molecules in human lung tissue homogenate was, GRP78 > CD147 > CTSL > ADAM17 > TMPRSS2. Human lung tissue homogenate is a heterogeneous population of cells precluding the ability to associate protein expression to a given cell type. We therefore interrogated a publicly available proteomic dataset derived from primary human airway epithelial cells grown under air-liquid interface culture conditions[32], examining the same candidates. Again, ACE2 protein expression was not detectable (Figure 4B). CD147, GRP78, and CTSL were expressed with multiple peptide counts, while TMPRSS2 and ADAM17 were only marginally expressed with low peptide counts. Collectively, two proteomic datasets from distinct lung sample formats provide complementary and consistent expression profiles of candidate molecules important in SARS-CoV-2 infection.

To localize the in situ expression of the candidate molecules of interest at the protein level, we pursued immunohistochemical analysis paired with immunoblot validation of the specificity of the selected antibodies for recognition of proteins of predicted molecular weight. An anti-ACE2 antibody detected only a single band in Calu-3 cells at the predicted molecular weight ($\sim 110 \mathrm{kDa}$) of ACE2 protein. The anti-ACE2 antibody required the use of a super-
sensitive ECL solution (Figure 5A - Top panel - Lanes 1-3). No ACE2 protein was detected in primary airway epithelial cells or the HBEC-6KT cell line despite confirmation of protein loading (Figure 5A - Lanes 4-9, bottom panel confirms protein loading). Independent immunoblotting with a distinct anti-ACE2 primary antibody was performed, with a single band observed in HEK cells, but not in immortalized human bronchial epithelial cells or A549 cells (Supplement Figure 2).

An anti-TMPRSS2 antibody detected multiple bands in all airway epithelial cell samples with a dominant band at the predicted molecular weight of ~55kDa (Figure 5B - Top panel). These patterns were conserved across all cell types that were analyzed.

An anti-CD147 antibody detected a single band in all airway epithelial cell samples with a dominant band at the predicted molecular weight of $\sim 55 \mathrm{kDa}$ (Figure $5 \mathrm{C}-$ Top panel). The immunoblot bands were consistent with the heavy glycosylation of CD147[50].

An anti-GRP78 antibody (BD - 610979) detected a single band in all airway epithelial cell samples with a dominant band at the predicted molecular weight of $\sim 78 \mathrm{kDa}$ (Figure 5D Top panel).

The immunoblots using anti-ACE2, CD147, and GRP78 demonstrated a single band of predicted molecular weight, suggesting that observed immunohistochemical staining should be specific to the protein of interest based on the target epitope, as both methods detect denatured proteins[51]. The same anti-ACE2 and CD147 antibodies were validated for immunohistochemistry. The anti-TMPRSS2 was used for immunohistochemistry, although the multiple bands observed by immunoblot caution the specificity of any observed in situ staining. Attempts to optimize anti-GRP78 antibody application for immunohistochemistry were unsuccessful, requiring additional antibody interrogation with HPA038845 (Atlas Antibodies) that was suitable for both immunoblotting and immunohistochemistry (Supplement Figure 3).

ACE2 immunohistochemistry revealed only select staining in rare cells in the airways and the alveoli of all 98 human lung samples analyzed that included healthy subjects and those
with chronic lung diseases (Figure 6). A single healthy human sample contained one positive airway epithelial cell with additional positive staining in the peripheral lung in cells with type II alveolar epithelial cell morphology (Figure 6A - second row). A representative image of a sample from a smoker with chronic obstructive pulmonary disease (Figure 6B - second row) shows no ACE2 protein staining in the airway epithelium and a rare positive cell in subbasement membrane tissue. Quantification of positive pixel count for ACE2 staining normalized to total tissue pixel count revealed no differences between healthy non-smokers and tobacco smokers (Supplement Figure 4). Lung microvasculature and human heart tissue stained had positive staining (Supplementary Figures 5-6) consistent with previously described reports for ACE2 protein staining patterns [52, 53].

TMPRSS2 immunohistochemistry revealed diffuse staining in the airway epithelium and in immune cells in the lung periphery, with greater staining in smokers with chronic obstructive pulmonary disease (COPD) (Figure 6A-B - third row). These observations were consistent in the majority of the 98 human samples examined.

CD147 immunohistochemistry revealed strong membrane restricted staining in the airway epithelium and diffuse staining in immune cells in the lung periphery (Figure 6A-B fourth row). CD147 displayed greater staining in smokers with COPD. These observations were consistent in the majority of the 98 human samples examined.

GRP78 immunohistochemistry revealed diffuse staining in airway and alveolar epithelium and in immune cells in the lung periphery (Figure 6A-B - fifth row). No qualitative differences in GRP78 staining were observed between healthy subjects and smokers with COPD.

Collectively, our in vitro and in situ protein profiling is consistent with our gene expression analysis with CD147 and GRP78 protein expression dominant over TMPRSS2 and ACE2. Additional examples of staining in lung tissue are provided in Supplement Figure 7. ACE2 protein expression is rare in human lung tissue and found in select cells in both healthy
individuals and those with chronic lung diseases. TMPRSS2 and CD147 protein expression are potentiated in individuals with a history of tobacco smoking and a diagnosis of COPD.

DISCUSSION:

The global COVID-19 pandemic that emerged in late 2019 is caused by SARS-CoV-2. The possible host receptor(s) for SARS-CoV-2 have not been exhaustively surveyed in human lung tissue at the gene and protein level. Understanding the expression levels and localization of candidate SARS-CoV-2 receptors in host lung tissue may provide insights into therapeutic interventions that might reduce disease spread, viral replication, or disease pathology. To address this knowledge gap, we performed gene expression, proteomic profiling at the tissue and cell level, and in situ protein profiling of candidate receptors in human airway epithelial cells and lung tissue (summarized in Figure 7). Collectively our data demonstrate rare ACE2 protein expression in human airway epithelial cells in vitro and in situ. Our protein expression data are consistent with low ACE2 promoter activity in a panel of lung epithelial cell samples and low ACE2 gene expression in bronchial epithelial cells (microarray) and lung cells (scRNAseq). We present confirmatory evidence for the presence of TMPRSS2, CD147, and GRP78 protein in vitro in airway epithelial cells and confirm broad in situ protein expression of CD147 and GRP78 in the respiratory mucosa. Our data suggest that for ACE2 to be an integral receptor for SARS-CoV-2, mechanisms are likely to exist that dynamically regulate expression in human lung, perhaps in periods of SARS-CoV-2 infection[54]. It is also possible that alternate receptors for SARS-CoV-2 are important in initial host cell infection.

Using a curated microarray gene expression dataset generated from bronchial brushings of 504 healthy subjects that considers the limitations of merging multiple datasets from distinct sources, we observed that sex did not correlate with gene expression of any candidate host molecule involved in SARS-CoV-2 infection and that ACE2 and TMPRSS2 were the lowest expressed genes of interest examined. In one dataset, ACE2 gene expression modestly decreased with age, although protein level confirmation was not possible. The low level of ACE2 and TMPRSS2 gene expression in bulk bronchial epithelial cell gene expression samples suggests low levels of cells expressing both of these genes within this lung tissue. We confirm
that tobacco smoking is associated with elevated ACE2 gene expression levels in bronchial epithelial cell samples[55], although we were unable to confirm this with immunohistochemistry analysis of protein on human lung samples.

Advances in transcriptomics have enabled scRNAseq that has identified unique and rare cell types in human lung that may have importance in health and disease[56, 57]. scRNAseq provides an opportunity to look at transcriptional profiles in subsets of cell populations, which may isolate a cell signal from a bulk sample. We therefore utilized scRNAseq data from healthy human lung samples as a parallel approach. The resolution of scRNAseq for subpopulations of epithelial cells revealed low or absent expression of ACE2 gene in all populations examined, whereas CD147 and GRP78 were present in all populations. Our results are consistent with current publicly available data that discuss the presence of a rare ACE2/TMPRSS2 positive cells[54]. Using lung samples from eight individuals (four HIV and active tuberculosis double +ve, two HIV +ve and tuberculosis -ve, and two double -ve controls), Ziegler et al. have reported in humans that only 0.8% of type II alveolar epithelial cells expressed both ACE2 and TMPRSS2 genes[54]. Further analysis of ciliated cells found that 5.3% of these cells expressed both ACE2 and TMPRSS2 genes. In vitro models with SARS-CoV, are consistent with this finding as ciliated cells are preferentially targeted by this coronavirus[58]. Most intriguing is that ACE2 and TMPRSS2 gene expressing cells were only identified in the HIV and tuberculosis double +ve samples. These observations were replicated in the upper airways, with only a rare population of secretory epithelial cells (0.3% of this population) co-expressing ACE2 and TMPRSS2. The reported scRNAseq results are consistent with a focused analysis looking at only ACE2 gene expression in a variety of lung cell types[59]. Importantly, these elegant transcriptomic analyses confirm our observations in bulk tissue microarray datasets.

Consortium based publicly available datasets represent another parallel approach to confirm our data. We have used the FANTOM5 dataset containing CAGE promoter activation data for 1,866 primary cells, cell lines, and tissue samples from humans[39] to examine the level
of promoter activity for each candidate SARS-CoV-2-receptor genes. The FANTOM5 CAGE data provides an additional and complementary approach to quantifying gene expression since a given gene's shared promoter can yield multiple transcripts at different expression levels, as well as being partially independent of any given transcript's half-life in the cell. In general, the promoter activity of ACE2 in airway-related tissues is low or absent; only a single sample originating from an adult lung yields a normalized CAGE promoter expression level above one transcript per million, while expression was observed in gut cells, consistent with known patterns of ACE2 expression[60]. Consistent with the microarray data, CD147 promoter activity is elevated relative to ACE2 across airway-related cells and tissues, although the relatively low CTSL (cathepsin L1) promoter activity is incongruent with modest levels of gene expression.

The expression of genes does not always correlate with protein expression[49]. With this in mind we performed combination proteomic analyses with immunoblot analyses. For our immunoblots, we used the human Calu-3 adenocarcinoma cell line as this cell is susceptible and permissive to SARS-CoV-2 infection and expresses ACE2, an observation we confirm[24, 29]. We also used primary human airway epithelial cells and the bronchial epithelial cell line (HBEC-6KT). We performed immunoblots for ACE2 and TMPRSS2 as these have been highlighted as interacting with SARS-CoV-2, while we probed CD147 as recent pre-clinical and clinical studies have provided proof of concept as a candidate SARS-CoV-2 receptor[26, 27]. Lastly, GRP78 was dominantly expressed throughout transcriptomic studies and was selected as a positive control as previous expression has been confirmed in human airway epithelial cells[61]. Cathepsin L was excluded from the present analysis due to low promoter activity (Figure 3), while ADAM17 was excluded as the proposed function in coronavirus infections is via ACE2[5, 24], which was included in analysis. Immunoblot analysis with all antibodies revealing dominant bands of predicted molecular weight, with the anti-TMPRSS2 polyclonal antibody revealing additional minor bands in all cell samples examined. The identity of these other bands remains unclear and suggest downstream immunohistochemical analysis may be
confounded by the specificity of this antibody. In contrast, antibodies for ACE2, CD147, and GRP78 were specific and could be used for immunohistochemistry without concerns of specificity. Interestingly, ACE2 protein could only be detected with a supersensitive ECL solution and only in Calu-3 cells, suggesting absent protein in primary human airway epithelial cell and the HBEC-6KT cell lines. Our data are consistent with previous immunoblots of primary human airway epithelial cells grown under submerged monolayer conditions using the same primary antibody, where ACE2 protein was absent, and only expressed under air-liquid interface culture conditions[62]. The observation that CD147 and GRP78 are also expressed in Calu-3 cells encourages further interrogation into these host proteins, as they may contribute to function of ACE2 and TMPRSS2 in SARS-CoV-2 binding and fusion in this cell type. Collectively, the profiling of antibodies by immunoblot of airway epithelial cells revealed distinct band patterns demonstrative of antibody specificity for ACE2, CD147, and GRP78, and to a lesser extent for TMPRSS2.

Immunohistochemical analysis has been performed for localization of ACE2 and TMPRSS2 in human lung[28, 30]. The observation of positive staining in human lung tissue for these proteins was not accompanied by companion immunoblot or complementary approaches to define the specificity of the antibody used[51]. In the absence of determination of antibody specificity, the historical data presented should be interpreted with caution. To address the issue of antibody specificity for immunohistochemical staining, we used the same antibodies we validated by immunoblot and confirmed findings using proteomics as an orthogonal, antibody independent, approach. We again focused on ACE2 and TMPRSS2 as these are candidate proteins important for SARS-CoV-2 infection of host cells. Our immunohistochemical staining patterns of ACE2 were consistent with transcriptional profiling and immunoblots with only 1 of 98 human samples demonstrating rare staining in the airway and alveolar epithelium. Positive ACE2 staining in heart tissues and areas of lung microvasculature suggest our staining protocol was successful. These results directly contrast those reported with antibodies that lacked
validation for specificity[28, 30]. TMPRSS2 was expressed more frequently across all samples examined with variability in the airway epithelium, associated with history of smoking and/or chronic obstructive pulmonary disease status. In contrast, CD147 expression was observed in airway epithelium of all samples. Similar to TMPRSS2, elevated CD147 expression was associated with history of smoking and/or chronic obstructive pulmonary disease status, consistent with previous reports[50]. Our original GRP78 antibody selected for immunoblotting was not validated for immunohistochemistry. We therefore performed confirmatory GRP78 immunoblotting and immunohistochemistry with an additional antibody (HPA038845) and provide demonstration of expression in human airway epithelial cells in vitro and in situ. Importantly, it is well established that GRP78 resides in the endoplasmic reticulum (ER) under normal physiological conditions where it acts as an ER-resident molecular chaperone to facilitate correct protein folding. However, under conditions of ER stress, including viral infection, a portion of ER-resident GRP78 relocates to the cell surface where it may act as a viral co-receptor [63]. Our research group has reported the presence of cell surface GRP78 in atherosclerotic plaques [64], prostate cancer [65] and kidney [66]. However, there are currently no commercially available anti-GRP78 antibodies that bind specifically to cell surface GRP78 and dual immunofluorescence is used to show colocalization of cell surface GRP78 with an established surface receptor[64]. This drawback precludes our ability to perform accurate cell surface GRP78 immunohistochemistry on lung tissue to interrogate this concept further in the context of SARS-CoV-2 receptors. Utilization of prostate cancer patient-derived GRP78 autoantibodies that are specific for cell-surface GRP78 [64] may be suitable on lung tissue for assessment of cell susceptibility to SARS-CoV-2 infection by GRP78.

Our study has several limitations that have not already been addressed above. Our observation of differences in gene expression between upper and lower airways and along the airway tree were not corroborated at the protein level. It remains possible that entirely different protein expression profiles for the candidate molecules examined exist in the upper airway,
presenting a different environment for SARS-CoV-2 interaction with the respiratory mucosa. Nasal pharyngeal swabs are capable of detecting SARS-CoV-2 virus[67] and this anatomical region likely is important for subsequent infection in the lower airways[8][68]. Related to this potential temporality of effect, it is possible that SARS-CoV-2 induces the expression of receptors on host cells following infection[54]. Our study is also limited by examining candidate molecules important in SARS-CoV-2 infection under basal conditions, in the absence of viral or environmental stimuli which may regulate gene transcription and protein translation.

SARS-CoV-2 infection and transmission has caused the global COVID-19 pandemic. An understanding of the receptors used by SARS-CoV-2 for host cell infection and the parallel characterization in human samples is required to inform development of intervention strategies aimed at mitigating COVID-19. Our data demonstrate rare ACE2 protein expression in human airway epithelial cells in vitro and in situ, consistent with low ACE2 promoter activity and ACE2 gene expression in bronchial epithelial cells. We present confirmatory evidence for the presence of TMPRSS2, CD147, and GRP78 protein in vitro in airway epithelial cells and confirm broad in situ protein expression of CD147 and GRP78 in the respiratory mucosa. Due to the overwhelming evidence that SARS virus interacts with ACE2, there are likely to be alternate mechanisms regulating ACE2 in the respiratory mucosa in the context of SARS-CoV-2 infection, and/or, perhaps other co-receptors, beyond what is expressed under basal conditions at the protein level.

ACKNOWLEDGEMENTS: We would like to acknowledge Mary Jo Smith from the McMaster Immunology Research Centre Core Histology facility for her timely and professional expertise with antibody staining for immunohistochemistry. We would like to thank Drs. Sam Wadsworth and John McDonough for their intellectual discussions around CD147 and airway epithelial cell biology. We would like to thank Dr. Charles Plessy for his suggestion to analyze the FANTOM5 data. We would like to thank all of the personal and professional support from the author's respective families (CLB, JMH, and HLH) and research institutes, and most importantly, the frontline healthcare workers during the COVID-19 pandemic.

FIGURE LEGENDS:

Figure 1. Microarray expression profiles of candidate SARS-CoV-2 receptor genes in upper and lower airways. A: Normalized $\log _{2}$ expression levels for ACE2, TMPRSS2, ADAM17, CTSL, CD147, and GRP78 genes compared across the upper airway (nasal, grey) and lower airways (trachea, green; large airway, blue; small airway, orange). CDH1 gene expression level is included as a positive control. B: Statistical values for comparisons for each gene at each airway generation. ${ }^{*}=p<0.05 ;{ }^{* *}=p<0.01 ;{ }^{* * *}=p<0.001$.

Figure 2: Microarray expression profiles of candidate SARS-CoV-2 receptor genes in lower airway epithelial cells analyzed by age and sex. A: Clustered heatmap of $\log _{2}$ expression levels from 504 GEO samples, annotated by age, sex, and microarray chip platform. Expression values reflect signal intensities, indicating lowest detected expression of ACE2 and highest expression of GRP78 and CDH1. B: Per-gene boxplots of expression levels separated by sex. C: Per-gene boxplots of expression levels separated by smoking status. D: Plots of gene expression levels versus age, with linear regression lines of best fit. A weak negative correlation ($r=-0.20, p=0.015$) was detected for ACE2 in the second dataset. Correlations were performed separately between platforms because of differences in their age distributions.

Figure 3: CAGE promoter activity for SARS-CoV-2-related genes from the FANTOM5 CAGE dataset. The FANTOM5 CAGE data consists of quantified promoter expression levels across the human genome for 1,866 samples from primary cells, cell lines, and tissue samples. In this figure, the FANTOM5 CAGE promoter activity data for several SARS-CoV-2-related genes are shown for samples related to lung, gut, heart, and prostate tissues ($n=120$). Dot sizes are proportional to promoter activity, depicted as $\log _{10}$-transformed normalized transcripts per million (TPM). Notably, ACE2 is either not expressed or expressed at low levels (less than 1 TPM in all but one sample) in the airway, including measurements from healthy (white rows) and cancerous cells (grey rows).

Figure 4. Proteomic profiles of candidate SARS-CoV-2 receptor genes in human tissue and airway epithelial cells. A: Intensity values of protein expression from Kim et al [31] for the genes ACE2, TMPRSS2, ADAM17, CTSL, CD147, and GRP78. CDH1 intensity is included as a positive control for expression in airway cells. Intensity values have been $\log _{10}$-transformed to facilitate comparison between candidates with different basal expression levels across tissue types. Grey cells in the heatmap correspond to an untransformed intensity of 0 and represent an undetectable signal. B: Intensity values $\log _{10}$-transformed for visualization of ACE2, TMPRSS2, ADAM17, CTSL, CD147, and GRP78 proteins in human airway epithelial cells from healthy, non-smokers ($\mathrm{n}=4$, males) grown under air-liquid interface culture conditions [32]. As in \mathbf{A}, CDH1 intensity is included as a positive control. Counts indicating the number of detected peptides associated with each parent protein are provided. N.D. indicates the protein was not detected in this study.

Figure 5: Immunoblot analysis of ACE2, TMPRSS2, CD147, and GRP78 protein expression in human airway epithelial cell protein lysates. A: ACE2 with single band for predicted molecular weight of 110 kDa (red box). B: TMPRSS2 with multiple bands including a dominant band at predicted molecular weight of 57 kDa (red box). C: CD147 with a single broad band around predicted molecular weight of 55 kDa (red box). D: GRP78 with a single band at predicted molecular weight of 78 kDa (red box). Lanes 1-3: Calu-3 cells. Lanes 4-6: Primary human airway epithelial cells. Lanes 7-9: HBEC-6KT. All cells grown under submerged monolayer conditions, with $n=3$ independent passages (Calu-3 or HBEC-6KT) or donor samples (Primary human airway epithelial cells - non-smoker, healthy subjects). For each independent blot of each protein, all of the same samples were run. Total protein loading control provided to demonstrate protein loaded for each sample.

Figure 6: Immunohistochemical localization of ACE2, TMPRSS2, CD147 and GRP78 protein in human lung tissue. A: Representative panel of a healthy non-smoker with no underlying chronic airway disease. B: Representative panel of a smoker with chronic obstructive pulmonary
disease. For both panels, black squares represent low magnification (12X) of a conducting airway with airway epithelium. Green squares correspond to high magnification regions (50X) of conducting airway epithelium that are defined in the low magnification image. Red squares correspond to high magnification regions (50X) of lung tissue away from airway lumen that are defined in the low magnification image. Row 1 - hematoxylin \& eosin, Row 2 - ACE2, Row 3 TMPRSS2, Row 4 - CD147, Row 5 - GRP78/HSPA5. Positive immunohistochemical staining is rust/brown. Total number of independent samples analyzes was 49-98.

Figure 7: Proposed functions of host airway epithelial cell molecules for interaction with SARS-CoV-2. Proteins associated (or suggested to be associated) with host cell entry of SARS-CoV-2 and the activation of the SARS-CoV-2 spike protein (SARS-S) are displayed. ACE2 is suggested as the primary SARS-S receptor for viral entry (interaction of ACE2 receptor-binding domain (RBD) with SARS-S leading to endosomal viral uptake) followed by activation of SARSS via pH -dependent CTSL-mediated cleavage. Secondary methods of viral entry and SARS-S activation are likely to involve proteases (e.g. TMPRSS2 and ADAM17) and/or secondary receptors (CD147 and GRP78). Dashed lines indicate mechanisms that have not been fully validated. Figure adapted from [20] with updates and additional information on candidate host molecules. Created with BioRender.com.

Supplement Figure 1: scRNAseq of peripheral lung tissue in nonfibrotic individuals. Violin plots for expression levels of A: ACE2, B: TMPRSS2, C: ADAM17, D: CTSL (Cathepsin L), E: CD147, and F: GRP78 across lung epithelial cell populations in healthy subjects (see methods for dataset reference for cell population markers).

Supplement Figure 2: Independent confirmation of immunoblot analysis for ACE2. Lane $1=$ Ladder. Lane 2 = A549 cell line. Lane 3 - HEK293 cells. Lane 4 - immortalized human bronchial epithelial cells. ACE2 has a predicted molecular weight of 110 kDa with GAPDH as a loading control. Anti-human ACE2 antibody is distinct from immunoblot in Figure 4.

Supplement Figure 3: Independent confirmation of immunoblot analysis for GRP78 using Atlas Antibodies, HPA038845. Lanes 1-3: Calu-3 cells. Lanes 4-6: Primary human airway epithelial cells. All cells grown under submerged monolayer conditions, with $n=3$ independent passages (Calu-3) or donor samples (Primary human airway epithelial cells - non-smoker, healthy subjects). The larger band may represent GRP94 which contains the KDEL domain common with GRP78[69]. The same samples run for this immunoblot were sampled in Figure 5. Total protein loading control (bottom image) provided to demonstrate protein loaded for each sample. Supplement Figure 4: ACE2 immunohistochemical staining quantification between samples from healthy subjects and tobacco smoking subjects. Positive pixels for immunohistochemical staining were expressed as a percentage of total tissue pixel count for each sample. $\mathrm{N}=49$. No statistical difference was observed between samples from healthy subjects and tobacco smoking subjects.

Supplement Figure 5: Immunohistochemical localization of ACE2 in microvasculature of human lung tissue. Representative examples ($\mathrm{n}=3$ donors) of positive ACE2 protein staining (rust/brown) in human lung tissue in regions distinct from those fields of view containing conducting airways. Images taken from identical slide use for Figure 5 (same staining run and conditions for image acquisition). Red and green boxes are 60X zoom of 3 X magnification of entire tissue core sample.

Supplement Figure 6: Immunohistochemical localization of ACE2 in human heart tissue.
Representative examples ($\mathrm{n}=4$ donors) of positive ACE2 protein staining (rust/brown) in human heart tissue. Staining protocol identical to Figure 5 and Supplementary Figure 3. Heart tissues stained on same staining run on Leica Bond Rx autostainer as for lung tissue in Figure 5. Red and green boxes are 60 X zoom of 3 X magnification of entire tissue core sample.

Supplement Figure 7: Additional example of immunohistochemical localization of ACE2, TMPRSS2, CD147 and GRP78 protein in human lung tissue. Black squares represent low magnification (12X) of a conducting airway with airway epithelium. Green squares correspond to
high magnification regions (50X) of conducting airway epithelium that are defined in the low magnification image. Red squares correspond to high magnification regions (50X) of lung tissue away from airway lumen that are defined in the low magnification image. Row 1 - hematoxylin \& eosin, Row 2 - ACE2, Row 3 - TMPRSS2, Row 4 - CD147, Row 5 - GRP78/HSPA5. Positive immunohistochemical staining is rust/brown.

References:

1. Bauch CT, Lloyd-Smith JO, Coffee MP, Galvani AP. Dynamically modeling SARS and other newly emerging respiratory illnesses: past, present, and future. Epidemiology 2005; 16: 791-801.
2. CDC, Ncird. Basic Information about SARS. .
3. Peiris JSM, Yuen KY, Osterhaus ADME, Stöhr K. The Severe Acute Respiratory Syndrome. N. Engl. J. Med. 2003. p. 2431-2441.
4. Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E. A novel coronavirus emerging in China - Key questions for impact assessment. N. Engl. J. Med.

Massachussetts Medical Society; 2020. p. 692-694.
5. Zhou P, Yang X Lou, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang R Di, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature Nature Research; 2020; 579: 270-273.
6. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, Evaluation and Treatment Coronavirus (COVID-19). StatPearls StatPearls Publishing; 2020.
7. Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am. J. Pathol. Elsevier Inc.; 2007. p. 1136-1147.
8. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, Yu J, Kang M, Song Y, Xia J, Guo Q, Song T, He J, Yen H-L, Peiris M, Wu J. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N. Engl. J. Med. 2020; 382: 1177-1179.
9. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, Niemeyer D, Jones TC, Vollmar P, Rothe C, Hoelscher M, Bleicker T, Brünink S, Schneider J, Ehmann R, Zwirglmaier K, Drosten C, Wendtner C. Virological assessment of hospitalized patients with COVID-2019. Nature 2020; .
10. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet Lancet Publishing Group; 2020; 395: 565-574.
11. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. Nature Research; 2020; 5: 562-569.
12. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science 2020; .
13. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (80-.). American Association for the Advancement of Science; 2020; 367: 12601263.
14. Li W, Moore MJ, Vasllieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greeneugh TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426: 450-454.
15. Glowacka I, Bertram S, Muller MA, Allen P, Soilleux E, Pfefferle S, Steffen I, Tsegaye TS, He Y, Gnirss K, Niemeyer D, Schneider H, Drosten C, Pohlmann S. Evidence that TMPRSS2 Activates the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Membrane Fusion and Reduces Viral Control by the Humoral Immune Response. J. Virol. American Society for Microbiology; 2011; 85: 4122-4134.
16. Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A Transmembrane Serine Protease Is Linked to the Severe Acute Respiratory Syndrome Coronavirus Receptor and Activates Virus Entry. J. Virol. American Society for Microbiology; 2011; 85: 873-882.
17. Chen Y-W, Lee M-S, Lucht A, Chou F-P, Huang W, Havighurst TC, Kim K, Wang J-K, Antalis TM, Johnson MD, Lin C-Y. TMPRSS2, a serine protease expressed in the prostate on the apical surface of luminal epithelial cells and released into semen in prostasomes, is misregulated in prostate cancer cells. Am. J. Pathol. American Society for Investigative Pathology Inc.; 2010; 176: 2986-2996.
18. Haga S, Nagata N, Okamura T, Yamamoto N, Sata T, Yamamoto N, Sasazuki T, Ishizaka Y. TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds. Antiviral Res. 2010; 85: 551-555.
19. Iwata M, Silva Enciso JE, Greenberg BH. Selective and specific regulation of ectodomain shedding of angiotensin-converting enzyme 2 by tumor necrosis factor alpha-converting enzyme. Am. J. Physiol. Cell Physiol. 2009; 297: C1318-29.
20. Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pohlmann S. TMPRSS2 and ADAM17 Cleave ACE2 Differentially and Only Proteolysis by TMPRSS2 Augments Entry Driven by the Severe Acute Respiratory Syndrome Coronavirus Spike Protein. J. Virol. American Society for Microbiology; 2014; 88: 1293-1307.
21. Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. U. S. A. 2005; 102: 11876-11881.
22. Chen Z, Mi L, Xu J, Yu J, Wang X, Jiang J, Xing J, Shang P, Qian A, Li Y, Shaw PX, Wang J, Duan S, Ding J, Fan C, Zhang Y, Yang Y, Yu X, Feng Q, Li B, Yao X, Zhang Z, Li L, Xue X, Zhu P. Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. J. Infect. Dis. Oxford University Press (OUP); 2005; 191:755-760.
23. Chu H, Chan CM, Zhang X, Wang Y, Yuan S, Zhou J, Au-Yeung RKH, Sze KH, Yang D, Shuai H, Hou Y, Li C, Zhao X, Poon VKM, Leung SP, Yeung ML, Yan J, Lu G, Jin DY, Gao GF, Chan JFW, Yuen KY. Middle East respiratory syndrome coronavirus and bat
coronavirus HKU9 both can utilize GRP78 for attachment onto host cells. J. Biol. Chem. American Society for Biochemistry and Molecular Biology Inc.; 2018; 293: 11709-11726.
24. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N-H, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell Elsevier BV; 2020; .
25. Ibrahim IM, Abdelmalek DH, Elshahat ME, Elfiky AA. COVID-19 spike-host cell receptor GRP78 binding site prediction. J. Infect. W.B. Saunders Ltd; 2020; .
26. Wang K, Chen W, Zhou Y-S, Lian J-Q, Zhang Z, Du P, Gong L, Zhang Y, Cui H-Y, Geng J-J, Wang B, Sun X-X, Wang C-F, Yang X, Lin P, Deng Y-Q, Wei D, Yang X-M, Zhu Y-M, Zhang K, Zheng Z-H, Miao J-L, Guo T, Shi Y, Zhang J, Fu L, Wang Q-Y, Bian H, Zhu P, Chen Z-N. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv Cold Spring Harbor Laboratory; 2020; : 2020.03.14.988345.
27. Bian H, Zheng Z-H, Wei D, Zhang Z, Kang W-Z, Hao C-Q, Dong K, Kang W, Xia J-L, Miao J-L, Xie R-H, Wang B, Sun X-X, Yang X-M, Lin P, Geng J-J, Wang K, Cui H-Y, Zhang K, Chen X-C, Tang H, Du H, Yao N, Liu S-S, Liu L-N, Zhang Z, Gao Z-W, Nan G, Wang Q-Y, Lian J-Q, et al. Meplazumab treats COVID-19 pneumonia: an open-labelled, concurrent controlled add-on clinical trial. medRxiv 2020; .
28. Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004; 203: 631-637.
29. Tseng C-TK, Tseng J, Perrone L, Worthy M, Popov V, Peters CJ. Apical entry and release of severe acute respiratory syndrome-associated coronavirus in polarized Calu-3 lung epithelial cells. J. Virol. 2005; 79: 9470-9479.
30. Bertram S, Heurich A, Lavender H, Gierer S, Danisch S, Perin P, Lucas JM, Nelson PS, Pöhlmann S, Soilleux EJ. Influenza and SARS-coronavirus activating proteases

TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PLoS One 2012; 7.
31. Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S, Thomas JK, Muthusamy B, Leal-Rojas P, Kumar P, Sahasrabuddhe NA, Balakrishnan L, Advani J, George B, Renuse S, Selvan LDN, Patil AH, Nanjappa V, Radhakrishnan A, Prasad S, Subbannayya T, Raju R, Kumar M, Sreenivasamurthy SK, Marimuthu A, Sathe GJ, et al. A draft map of the human proteome. Nature Nature Publishing Group; 2014; 509: 575-581.
32. Foster MW, Gwinn WM, Kelly FL, Brass DM, Valente AM, Moseley MA, Thompson JW, Morgan DL, Palmer SM. Proteomic Analysis of Primary Human Airway Epithelial Cells Exposed to the Respiratory Toxicant Diacetyl. J. Proteome Res. American Chemical Society; 2017; 16: 538-549.
33. Giovannini-Chami L, Marcet B, Moreilhon C, Chevalier B, Illie MI, Lebrigand K, RobbeSermesant K, Bourrier T, Michiels J-F, Mari B, Crénesse D, Hofman P, de Blic J, Castillo L, Albertini M, Barbry P. Distinct epithelial gene expression phenotypes in childhood respiratory allergy. Eur. Respir. J. 2012; 39: 1197-1205.
34. Raman T, O'Connor TP, Hackett NR, Wang W, Harvey B-GG, Attiyeh MA, Dang DT, Teater M, Crystal RG. Quality control in microarray assessment of gene expression in human airway epithelium. BMC Genomics 2009; 10: 493.
35. Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 2007; 23: 1846-1847.
36. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Oleś AK, Pagès H, Reyes A, Shannon P, Smyth GK, Tenenbaum D, Waldron L, Morgan M. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods Nature Publishing Group; 2015; 12: 115-121.
37. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007; 8: 118-127.
38. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. SVA detailed instruction. Bioinformatics 2012; 28: 882-883.
39. Forrest ARR, Kawaji H, Rehli M, Baillie JK, De Hoon MJL, Haberle V, Lassmann T, Kulakovskiy I V., Lizio M, Itoh M, Andersson R, Mungall CJ, Meehan TF, Schmeier S, Bertin N, Jørgensen M, Dimont E, Arner E, Schmidl C, Schaefer U, Medvedeva YA, Plessy C, Vitezic M, Severin J, Semple CA, Ishizu Y, Young RS, Francescatto M, Altschuler IA, Albanese D, et al. A promoter-level mammalian expression atlas. Nature Nature Publishing Group; 2014; 507: 462-470.
40. Abugessaisa I, Noguchi S, Hasegawa A, Harshbarger J, Kondo A, Lizio M, Severin J, Carninci P, Kawaji H, Kasukawa T. FANTOM5 CAGE profiles of human and mouse reprocessed for GRCh38 and GRCm38 genome assemblies. Sci. data Nature Publishing Groups; 2017; 4: 170107.
41. Severin J, Lizio M, Harshbarger J, Kawaji H, Daub CO, Hayashizaki Y, FANTOM Consortium, Bertin N, Forrest ARR. Interactive visualization and analysis of large-scale sequencing datasets using ZENBU. Nat. Biotechnol. Nature Publishing Group; 2014; 32: 217-219.
42. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. Nature Publishing Group; 2018; 36: 411-420.
43. Habermann AC, Gutierrez AJ, Bui LT, Yahn SL, Winters NI, Calvi CL, Peter L, Chung MI, Taylor CJ, Jetter C, Raju L, Roberson J, Ding G, Wood L, Sucre JM, Richmond BW, Serezani AP, McDonnell WJ, Mallal SB, Bacchetta MJ, Loyd JE, Shaver CM, Ware LB, Bremner R, Walia R, Blackwell TS, Banovich NE, Kropski JA. Single-cell RNAsequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in
pulmonary fibrosis. .
44. Huff RD, Rider CF, Yan D, Newton R, Giembycz MA, Carlsten C, Hirota JA. Inhibition of ABCC4 potentiates combination beta agonist and glucocorticoid responses in human airway epithelial cells. J Allergy Clin Immunol 2017; .
45. Hirota JA, Gold MJ, Hiebert PR, Parkinson LG, Wee T, Smith D, Hansbro PM, Carlsten C, VanEeden S, Sin DD, McNagny KM, Knight DA. The nucleotide-binding domain, leucine-rich repeat protein 3 inflammasome/LL-1 receptor I axis mediates innate, but not adaptive, immune responses after exposure to particulate matter under 10 mum. Am J Respir Cell Mol Biol 2015; 52: 96-105.
46. Hirota JA, Marchant DJ, Singhera GK, Moheimani F, Dorscheid DR, Carlsten C, Sin D, Knight D. Urban particulate matter increases human airway epithelial cell IL-1beta secretion following scratch wounding and H1N1 influenza A exposure in vitro. Exp Lung Res 2015; 41: 353-362.
47. Ramirez RD, Sheridan S, Girard L, Sato M, Kim Y, Pollack J, Peyton M, Zou Y, Kurie JM, Dimaio JM, Milchgrub S, Smith AL, Souza RF, Gilbey L, Zhang X, Gandia K, Vaughan MB, Wright WE, Gazdar AF, Shay JW, Minna JD. Immortalization of human bronchial epithelial cells in the absence of viral oncoproteins. Cancer Res 2004/12/18. 2004; 64: 9027-9034.
48. Gürtler A, Kunz N, Gomolka M, Hornhardt S, Friedl AA, McDonald K, Kohn JE, Posch A. Stain-Free technology as a normalization tool in Western blot analysis. Anal. Biochem. 2013; 433: 105-111.
49. Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 2012; 13: 227-232.
50. Jouneau S, Khorasani N, De Souza P, MacEdo P, Zhu J, Bhavsar PK, Chung KF. EMMPRIN (CD147) regulation of MMP-9 in bronchial epithelial cells in COPD. Respirology 2011; 16: 705-712.
51. Uhlen M, Bandrowski A, Carr S, Edwards A, Ellenberg J, Lundberg E, Rimm DL, Rodriguez H, Hiltke T, Snyder M, Yamamoto T. A proposal for validation of antibodies. Nat. Methods Nature Publishing Group; 2016. p. 823-827.
52. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res. 2000; 87.
53. Burrell LM, Risvanis J, Kubota E, Dean RG, Macdonald PS, Lu S, Tikellis C, Grant SL, Lew RA, Smith AI, Cooper ME, Johnston CI. Myocardial infarction increases ACE2 expression in rat and humans.
54. Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, Cao Y, Yousif AS, Bals J, Hauser BM, Feldman J, Muus C, Wadsworth MH, Kazer SW, Hughes TK, Doran B, Gatter GJ, Vukovic M, Taliaferro F, Mead BE, Guo Z, Wang JP, Gras D, Plaisant M, Ansari M, Angelidis I, Adler H, Sucre JMS, Taylor CJ, Lin B, et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell Cell Press; 2020; 181: 1016-1035.e19.
55. Leung JM, Yang CX, Tam A, Shaipanich T, Hackett T-L, Singhera GK, Dorscheid DR, Sin DD. ACE-2 expression in the small airway epithelia of smokers and COPD patients: implications for COVID-19. Eur. Respir. J. European Respiratory Society (ERS); 2020; 55: 2000688.
56. Schiller HB, Montoro DT, Simon LM, Rawlins EL, Meyer KB, Strunz M, Vieira Braga FA, Timens W, Koppelman GH, Budinger GRS, Burgess JK, Waghray A, Van Den Berge M, Theis FJ, Regev A, Kaminski N, Rajagopal J, Teichmann SA, Misharin A V., Nawijn MC. The human lung cell atlas: A high-resolution reference map of the human lung in health and disease. Am. J. Respir. Cell Mol. Biol. American Thoracic Society; 2019. p. 31-41.
57. Plasschaert LW, Žilionis R, Choo-Wing R, Savova V, Knehr J, Roma G, Klein AM, Jaffe AB. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature Nature Publishing Group; 2018. p. 377-381.
58. Sims AC, Baric RS, Yount B, Burkett SE, Collins PL, Pickles RJ. Severe Acute Respiratory Syndrome Coronavirus Infection of Human Ciliated Airway Epithelia: Role of Ciliated Cells in Viral Spread in the Conducting Airways of the Lungs. J. Virol. American Society for Microbiology; 2005; 79: 15511-15524.
59. Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem. Biophys. Res. Commun. 2020; .
60. Hikmet F, Méar L, Uhlén M, Lindskog C. The protein expression profile of ACE2 in human tissues. bioRxiv Cold Spring Harbor Laboratory; 2020; : 2020.03.31.016048.
61. Aksoy MO, Kim V, Cornwell WD, Rogers TJ, Kosmider B, Bahmed K, Barrero C, Merali S, Shetty N, Kelsen SG. Secretion of the endoplasmic reticulum stress protein, GRP78, into the BALF is increased in cigarette smokers. Respir. Res. BioMed Central Ltd.; 2017; 18: 78.
62. Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, Farzan M, Wohlford-Lenane C, Perlman S, McCray PB. ACE2 Receptor Expression and Severe Acute Respiratory Syndrome Coronavirus Infection Depend on Differentiation of Human Airway Epithelia. J. Virol. American Society for Microbiology; 2005; 79: 14614-14621.
63. Gonzalez-Gronow M, Selim MA, Papalas J, Pizzo S V. GRP78: A multifunctional receptor on the cell surface. Antioxidants Redox Signal. Antioxid Redox Signal; 2009. p. 22992306.
64. Crane ED, AI-Hashimi AA, Chen J, Lynn EG, Won KD, Lhoták Š, Naeim M, Platko K, Lebeau P, Byun JH, Shayegan B, Krepinsky JC, Rayner KJ, Marchiò S, Pasqualini R, Arap W, Austin RC. Anti-GRP78 autoantibodies induce endothelial cell activation and
accelerate the development of atherosclerotic lesions. JCI insight NLM (Medline); 2018; 3.
65. Al-Hashimi AA, Lebeau P, Majeed F, Polena E, Lhotak Š, Collins CAF, Pinthus JH, Gonzalez-Gronow M, Hoogenes J, Pizzo S V., Crowther M, Kapoor A, Rak J, Gyulay G, D'Angelo S, Marchiò S, Pasqualini R, Arap W, Shayegan B, Austin RC. Autoantibodies against the cell surface-Associated chaperone GRP78 stimulate tumor growth via tissue factor. J. Biol. Chem. American Society for Biochemistry and Molecular Biology Inc.; 2017; 292: 21180-21192.
66. Van Krieken R, Mehta N, Wang T, Zheng M, Li R, Gao B, Ayaub E, Ask K, Paton JC, Paton AW, Austin RC, Krepinsky JC. Cell surface expression of 78-kDa glucoseregulated protein (GRP78) mediates diabetic nephropathy. J. Biol. Chem. American Society for Biochemistry \& Molecular Biology (ASBMB); 2019; 294: 7755-7768.
67. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA - J. Am. Med. Assoc. American Medical Association; 2020.
68. Hou YJ, Okuda K, Edwards CE, Martinez DR, Asakura T, Dinnon KH, Kato T, Lee RE, Yount BL, Mascenik TM, Chen G, Olivier KN, Ghio A, Tse L V., Leist SR, Gralinski LE, Schäfer A, Dang H, Gilmore R, Nakano S, Sun L, Fulcher ML, Livraghi-Butrico A, Nicely NI, Cameron M, Cameron C, Kelvin DJ, de Silva A, Margolis DM, Markmann A, et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell Elsevier; 2020; 0.
69. Zhang Y, Liu R, Ni M, Gill P, Lee AS. Cell surface relocalization of the endoplasmic reticulum chaperone and unfolded protein response regulator GRP78/BiP. J. Biol. Chem. American Society for Biochemistry and Molecular Biology; 2010; 285: 15065-15075.

A

B

	ACE2	TMPRSS2	ADAM17	CTSL	CD147	GRP78	CDH1
Trachea vs Nasal	**						
arge vs Nasal							
Small vs Nasal	*						
Large vs Trachea	**						
Small vs Trachea	***			***			*
Large vs Small	**						*

Figure 2

$\mathrm{N}=181$
HuGene-1_0-st-v1

Figure 3
Tissue source

-

$\log 10(T P M)$	
\cdot	1
\bullet	10
100	
1000	
10000	

Cell state

							Adult Adrenal Adult Colon	Log $_{10}$-transformed protein expression
							Adult Esophagus	
							Adult Frontal Cortex	3
							Adult Gallbladder	
							Adult Heart	2.5
							Adult Kidney	
							Adult Liver	2
							Adult Lung	1.5
							Adult Ovary	
							Adult Pancreas	1
							Adult Prostate	
							Adult Rectum	0.5
							Adult Retina	
							Adult Spinal Cord	
							Adult Testis	
							Adult Urinary Bladder	
							B Cells	
							CD4 Cells	
							CD8 Cells	
							Monocytes	
							NK Cells	
							Placenta	
							Platelets	
							Fetal Brain	
							Fetal Gut	
							Fetal Heart	
							Fetal Liver	
							Fetal Ovary	
							Fetal Testis	
$\stackrel{\bar{I}}{\bar{O}}$	N	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \sum_{i}^{N} \\ & \sum_{i}^{\prime} \end{aligned}$	\sum_{i}^{N}		\overparen{O} $\stackrel{\rightharpoonup}{O}$ 0 0 0 0	20 0 0 0 0 0 0 0 0 10		

B

Figure 5

Figure 6

A: Healthy

B: Tobacco Smoker

Figure 7

Supplement Table 1: Metadata and references for curated GEO deposited datasets of primary human airway epithelial cells.

GSE Accession	Affymetrix Chip	Sample Annotations (N=504)	Citation
GSE4302	HG-U133_Plus_2	15 current smokers 11 never smokers 2 unknown	Woodruff et al., 2007; 2009
GSE37147	HuGene-1_0-st-v1	82 former smokers (49 male, 33 female) 69 current smokers (34 male, 35 female) 8 unknown	Steiling et al., 2013
GSE67472	HG-U133_Plus_2	23 male 20 female	Christenson et al., 2015
GSE108134	HG-U133_Plus_2	176 current smokers 98 never smokers	O'Beirne et al., 2018

Christenson SA, Steiling K, van den Berge M, Hijazi K, Hiemstra PS, Postma DS, Lenburg ME, Spira A, Woodruff PG. Asthma-COPD overlap. Clinical relevance of genomic signatures of type 2 inflammation in chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine 2015; 191: 758-766.

O'Beirne SL, Shenoy SA, Salit J, Strulovici-Barel Y, Kaner RJ, Visvanathan S, Fine JS, Mezey JG, Crystal RG. Ambient Pollution-related Reprogramming of the Human Small Airway Epithelial Transcriptome.
American journal of respiratory and critical care medicine 2018; 198: 1413-1422.
Steiling K, van den Berge M, Hijazi K, Florido R, Campbell J, Liu G, Xiao J, Zhang X, Duclos G, Drizik E, Si H, Perdomo C, Dumont C, Coxson HO, Alekseyev YO, Sin D, Pare P, Hogg JC, McWilliams A, Hiemstra PS, Sterk PJ, Timens W, Chang JT, Sebastiani P, O'Connor GT, Bild AH, Postma DS, Lam S, Spira A, Lenburg ME . A dynamic bronchial airway gene expression signature of chronic obstructive pulmonary disease and lung function impairment. American journal of respiratory and critical care medicine 2013; 187: 933942.

Woodruff PG, Boushey HA, Dolganov GM, Barker CS, Yang YH, Donnelly S, Ellwanger A, Sidhu SS, DaoPick TP, Pantoja C, Erle DJ, Yamamoto KR, Fahy JV. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proceedings of the National Academy of Sciences of the United States of America 2007; 104: 15858-15863.

Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, Koth LL, Arron JR, Fahy JV. T-helper type 2-driven inflammation defines major subphenotypes of asthma. American journal of respiratory and critical care medicine 2009; 180: 388-395.|

Supplement Table 2: Statistics for impact of smoking status relative to never smokers on gene expression of candidate SARS-CoV-2 receptors (Figure 2C data)

	ACE2	TMPRSS2	ADAM17	CTSL	CD147	GRP78	CDH1
Current vs Former	***	***	*	***	***		**
Current vs Never	***	**		***	***	*	***
Former vs Never	*	**			***		***

$0^{\prime * * * \prime} 0.001^{\text {'**' }} 0.01^{\text {'*' }} 0.05^{\prime \prime} 0.1^{\prime \prime} 1$
Results for each individual genes obtained via ANOVA followed by Tukey's Honestly Significant Difference post-hoc test using the stats package in R.

Supplement Figure 1

CTSL

TMPRSS2

CD147

ADAM17

GRP78

Anti-GRP78 (78 kDa) antibody - HPA038845

Supplement Figure 5

Examples of positive ACE-2 immunohistochemistry in human lung microvasculature

[3x]

[3x]

[3x]

Supplement Figure 6

Examples of positive ACE-2 immunohistochemistry in human heart

$[25 x]$		

