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one searches for rules that can be used to predict uncer-
tain future events.

PRINCIPLES OF CART

CART models use decision trees to display how data may 
be classifi ed. Their method is technically known as binary 
recursive partitioning : the data are successively split along 
coordinate axes of the explanatory variables so that, at any 
node, the split is selected that maximally distinguishes the 
response variable in the left and the right branches. If the 
response variable is categorical, the tree is called a clas-
sifi cation tree; if continuous, it is called a regression tree. 
Explanatory variables can be both categorical and con-
tinuous. The process is binary because parent nodes are 
always split into exactly two child nodes by asking ques-
tions that have a “yes” or “no” answer, and it is recursive 
because the process can be repeated by treating each child 
node as a parent.

Making a decision when a tree is complete is best 
achieved by growing the tree until it is impossible 
to grow it further and then examining smaller trees 
obtained by gradually decreasing the size of the maxi-
mal tree in a process called pruning. A single optimal 
tree is then determined by testing for misclassifi cation 
error rates of candidate trees. When the data are suffi -
ciently numerous (i.e., greater than 3,000 records), they 
are divided into a learning (also called training) sample 
and a test sample, created by a completely independent 
set of data or a random subset (e.g., 20%) of the input 
data. To calculate the  misclassifi cation error rate, the 
model is fi tted to the learning sample to predict values 
in the test sample. The error rate is calculated for the 
largest tree as well as for every smaller tree. When the 
data are not suffi ciently numerous to allow for sepa-
rate test samples, cross-validation is employed. Cross-
 validation involves splitting the data into a number 
(e.g., 10) of smaller samples with similar distributions of 
the response variable. Trees are then  generated, exclud-
ing the data from each subsample in turn. For each tree, 
the error rate is estimated from the subsample excluded 
in generating it, and the cross-validated error for the 
overall tree is then calculated. The cross-validated or 
test sample errors are then plotted against tree sizes 
(insets in Fig. 1). The optimal tree is the one with the 
lowest error rate (SE rule 0 in the inset) or that is within 
one standard error of the minimum (SE rule 1 in the 
inset). A series of 50 or 100 validations of error rates for 
both rules is recommended, of which the modal (most 
likely) optimal tree is chosen for description. This tree 
is then represented graphically (Fig. 1), with the root 
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CART AND RELATED 
METHODS

VOJTĚCH JAROŠÍK

Charles University, Prague, Czech Republic

Classifi cation and regression trees (CART) are a com-
puter-intensive data-mining tool originally designed for 
analyzing vast databases of often incomplete data, with 
an aim to fi nd fi nancial frauds, suitable candidates for 
loans, potential customers, and other uncertain outputs. 
Searching for potential invasive species and their traits 
responsible for invasiveness, predicting their potential dis-
tributions in regions where they are not native, or identi-
fying factors that distinguish invasible communities from 
those that resist invasion are similar risk assessments. This 
is perhaps one reason why CART and related methods 
are becoming increasingly popular in the fi eld of inva-
sion biology. Identifying homogeneous groups with high 
or low risk and constructing rules for making  predictions 
about individual cases is, in essence, the same for fi nancial 
credit scoring as for pest risk assessment. In both cases, 
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FIGURE 1 (A) Classifi cation tree describing the probability of an alien plant presence (No/Yes) in boundary segments of Kruger National Park 

(KNP) based on explanatory variables from within the KNP and areas adjacent to the park (after Foxcroft et al., Protected Area Boundaries as a 

Natural Filter of Plant Invasions from Surrounding Landscapes, under review). (B) Regression tree describing the impact of individual invading 

plant species on diversity of native plant communities (Shannon’s index of diversity H’) based on absolute and relative population performances 

of the invaders. (After Hejda et al. 2009. Journal of Ecology 97: 393–403.) For both trees, the vertical depth of each node is proportional to its 

improvement value that corresponds to explained variance at the node. (Continued on next page)
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FIGURE 1 (Continued) Insets: Cross-validation processes for the selection of the optimal trees. The lines show a single representative tenfold cross-

validation of the most frequent (modal) optimal tree with standard error (SE) estimate for each tree size. Bar charts are the numbers of optimal 

trees of each size (frequency of tree) selected from a series of 50 cross-validations based on the minimum-cost tree, which minimizes the cross-

validated error (white, SE rule 0), and 50 cross-validations based on SE rule 1 (gray, SE rule 1), which minimizes the cross-validated error within one 

standard error of the minimum. The most frequent (modal) classifi cation tree, established based on both SE rules, has fi ve terminal nodes (A), and 

the modal regression tree, established based on SE rule 0, has six terminal nodes (B).

 (A) Each node (polygonal table with splitting variable name) and terminal node with node number shows table with columns for class (No/

Yes), number of cases and percent of cases for each class, total number of cases (N), and graphical representation of the percentage of No 

(gray) and Yes (black) cases in each class (horizontal bar). Except for the root node standing for undivided data at the top, there are the splitting 

variable name and split criterion above each node. “Run-off” is the categorical measure of mean annual runoff from the surrounding watershed 

(million m3), “natural areas outside” refers to the percentage of natural areas within a 5 km radius outside the KNP boundary, “road density 

outside” refers to the density of major roads within a 10 km radius outside the KNP boundary, and “road present inside” refers to the presence 

or absence of all roads in the segment inside the KNP. In segments with no river, the probability of being invaded depended on the density of 

major roads within a 10 km radius outside the KNP boundary. If there was a river, invasion was unlikely only in segments with more than 90 per-

cent of protected natural areas with natural vegetation in the adjacent 5 km radius outside the KNP, and with roads absent within the park. The 

overall misclassifi cation rate of the model is 13.5 percent, compared to 50 percent for the null model; the sensitivity (true positive rate, defi ned 

as proportion of observations correctly identifi ed as suitable) is 0.90; the specifi city (true negative rate) is 0.80; the misclassifi cation rate for 

the presence of an alien species is 0.10; the misclassifi cation for the absence is 0.20. This model is an alternative tree after dropping a primary 

splitter, the continuous explanatory variable “mean annual runoff,” from the optimal tree. The categorical surrogate “run-off” appeared at Node 

1 of the optimal tree with an association value of 0.86, and it explained 86.8 percent of the variability of the primary split. The optimal tree had 

a bit higher misclassifi cation rate (14%), but higher sensitivity (0.92) and specifi city (0.81), and a lower misclassifi cation rate for the presence 

(0.075) and absence (0.19) of alien species, with only three compared to fi ve terminal nodes for the alternative tree. The chosen continuous 

explanatory variables of the optimal tree, “mean annual runoff” and “road density outside,” lacked collinearity and could be used as explanatory 

variables in a logistic regression.

 (B) Each node shows the splitting variable, splitting criteria, mean ± standard deviation of the difference in species diversity between 

invaded and uninvaded pairs of plots (negative value indicates a decrease due to invasion), and number of plots in brackets. “Difference in 

cover” is a cover difference between an invading species and the dominant native species in uninvaded plots (in percent), “height” is height of 

the invading species (in centimeters), and “species” are the scientifi c names of the invading plants. To reduce the splitting power of the high 

categorical variable “species” (13 factor levels), the species were adjusted to have no inherent advantage over continuous explanatory vari-

ables. The impact was fi rst divided based on the cover difference of approximately 50 percent (≤47%). The group with the small differences in 

cover exhibited no impact on diversity if the cover of the invading and native dominant species differed by less than or equal to 7.5 percent; 

for cover differences between 8 and 47 percent, the impacts were species-specifi c. The group with differences in cover above 47 percent 

indicated the absolutely highest impact on diversity if the invading species was taller than 190 cm. If the invading species was shorter than 

190 cm, then the impact on diversity was further divided based on differences in cover. The tree explains 74 percent of the variance. The alter-

native linear model explained 76 percent of the variance, but all the variance was included in interactions in a way that rendered the model 

noninterpretable.

standing for undivided data at the top, and the termi-
nal nodes, describing the most homogeneous groups of 
data, at the bottom of the hierarchy.

The quality of each split can be expressed based 
on deviance explained by the split and visualized as a 
 vertical depth of the split. The overall quality of the 
best  classifi cation tree (Fig. 1A) can be expressed as its 
misclassifi cation rate by comparing the misclassifi ca-
tion rate of the optimal tree with the misclassifi cation 
rate of the null model (e.g., 50% null misclassifi cation 
rate for a presence–absence response variable) and with 
the misclassifi cation rate for each category of response 
variable. The overall quality can be also described as 
specifi city and sensitivity of cross-validated or test 
samples. Specifi city is defi ned as the true positive rate, 
or the proportion of observations correctly identifi ed 
(for instance, the ability of the model to predict that 
a species is not invasive when it is not). Sensitivity is 
defi ned as the true negative rate (e.g., the ability to 

predict that a species is invasive when it is). The overall 
quality and appropriateness of the optimal  regression 
tree (Fig. 1B) can be expressed similarly to analogous 
features of a linear model. We can express explained 
variance r2 of the tree, and because we know observed 
and predicted values for each terminal node, we can 
also calculate residuals as a difference between observed 
and expected values and use them as a  diagnostic check 
of the model.

RELATED METHODS AND THEIR 

COMBINATIONS WITH CART

When explanatory variables have no missing values and 
either have or can be transformed to an approximately 
normal distribution, CART models can be replaced 
by linear or multivariate statistics. Linear models can 
then substitute for regression trees. If we have a cat-
egorical response variable with two classes and at least 
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categorical variables that are never distinguished during 
splitting.

IMPORTANT PROPERTIES OF CART

CART models are nonparametric. Consequently, unlike 
with parametric linear models, nonnormal distribu-
tion and collinearity do not prevent reliable parameter 
estimates. Because the trees are invariant to monotonic 
transformations of continuous explanatory variables, 
no transformation is needed prior to analyses. Outliers 
among the response variables generally do not affect the 
models because splits usually occur at non-outlier values. 
However, in some circumstances, transformation of the 
response variable may be important to alleviate variance 
heterogeneity.

Surrogates of each split, describing splitting rules 
that closely mimic the action of the primary split, can 
be assessed and ranked according to their association 
values, with the highest possible value 1.0 correspond-
ing to the surrogate producing exactly the same split 
as the primary split. Surrogates can then be used to 
replace an expensive primary explanatory variable 
by a less expensive, although probably less accurate, 
one, and then to build alternative trees on surrogates 
(Fig. 1A). Unlike in a linear model, a variable in CART 
thus can be considered highly important even if it never 
appears as a primary splitter. Surrogates also serve to 
treat missing values, because the alternative splits are 
used to classify a case when its primary splitting vari-
able is missing.

However, as it is easier to be a good splitter on a 
small number of records (e.g., splitting a node with 
just two records), to prevent missing explanatory vari-
ables from having an advantage as splitters, the power 
of explanatory variables can be penalized in propor-
tion to the degree to which they are missing. High-
level categorical explanatory variables have inherently 
higher splitting power than continuous explanatory 
variables and therefore can also be penalized to level 
the playing fi eld (Fig. 1B). Finally, proportions calcu-
lated from larger samples give more precise estimates, 
and therefore, proportional response variables can be 
weighted by their sample sizes; a similar approach can 
be applied to stratifi ed sampling on strata having differ-
ent  sampling intensities. CART models can also accom-
modate situations in which some misclassifi cations are 
more serious than others. For instance, if invasion risks 
are classifi ed as low, moderate, and high, it would be 
more costly to classify a high-risk species as low-risk 

one explanatory variable is continuous, then a suitable 
method to replace a classifi cation tree is a binary logis-
tic regression; if all explanatory variables are continuous, 
then a suitable alternative is also multivariate discrimi-
nant function analysis. For missing values, CART and 
a related technique called random forests (RF) can be 
applied. RF gives, at least for small samples, more robust 
results than CART and allows for a ranking of explana-
tory variables, but it does not have the CART virtue of 
easily followed graphic presentation. The ability to treat 
missing values, however, makes both RF and CART 
invaluable tools when one tries to identify and rank traits 
associated with invasiveness, impact of invasive species, 
and similar tasks in which we usually deal with very 
incomplete data.

When classifi cation trees are compared with logis-
tic regressions or discriminant analyses, the optimal 
tree often performs better on the learning sample, and 
because of the CART model verifi cations on validated 
samples, the tree is usually more accurate on new data. 
The same is usually true for RF, owing to its self- testing 
procedure based on an extension of cross-validation. 
When we compare linear models and regression trees 
on data determining susceptibility to invasions of 
 different habitats by plant invaders, we also fi nd 
slightly higher explanatory power for regression trees, 
and the trees are much easier to interpret than linear 
models. The reason is that, unlike linear models, which 
uncover a single dominant structure in the data, CART 
models are designed to work with data that might 
have multiple structures. The models can use the same 
explanatory variable in different parts of the tree, deal-
ing effectively with nonlinear relationships and higher-
order interactions. In fact, provided there are enough 
observations, the more complex the data and the more 
variables that are available, the better tree models will 
do compared to alternative methods. With a complex 
data set, understandable and generally interpretable 
results often can be found only by constructing trees 
(Fig. 1B).

However, trees are also excellent for initial data 
inspection. CART models are often used to select a 
manageable number of core measures from databases 
with hundreds of variables. A useful subset of predictors 
from a large set of variables can then be used in building 
a formal linear model (Fig. 1A). CART can also suggest 
further model simplifi cation by converting a continu-
ous variable to a categorical one at cut-points used to 
generate splits and by lumping together subcategories of 
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CHEATGRASS

RICHARD N. MACK

Washington State University, Pullman

Cheatgrass (Bromus tectorum), or downy brome, is 
a  cleistogamous (i.e., almost totally self-pollinating) 
annual grass that occupies an enormous native range 
in Eurasia and the northern rim of Africa. In the past 
200 years it has been transported worldwide, almost 
always as an accidental introduction, and it now has 
a naturalized range that includes North and South 
America, Australia, and  temperate environments in 
Oceania. It has become a widespread invader in arid 
North America, especially in the largely treeless region 
between the Rocky Mountains and the Cascade and 

than as moderate-risk. This can be achieved by specify-
ing a differential penalty for misclassifying high, mod-
erate, and low risk.

LIMITATIONS

CART models are good, but not as good to solve com-
pletely all problems with data that violate a basic assump-
tion of the independence of errors of observations due to 
temporal or spatial autocorrelation, or due to a related 
problem of phylogenetic relatedness.  Fortunately, as we 
do not need formal parametric tests of statistical signifi -
cance, spatial autocorrelations cannot prevent correct use 
of CART and related nonparametric methods (e.g., for 
prediction of species distributions). However, CART can-
not distinguish fi xed and random effects and thus cannot 
be used with mixed effect and nested statistical designs. 
Trees thus do not allow for phylogenetic corrections using 
mixed-effect general linear models in which taxonomic 
hierarchy is included as nested random effects. They are 
also ineffi cient when used on principal coordinate axes 
derived from phylogenetic trees to account for related-
ness. The reason is that the principal coordinate axes are 
orthogonal, and trees exhibit their greatest strengths with 
a highly nonlinear structure and complex interactions. 
Their usefulness decreases with increasing linearity of the 
relationships, and consequently, on mutually indepen-
dent principle coordinates, no trees are built. Because, 
in invasion biology, we usually need values for each 
individual species, phylogenetic contrasts derived from 
related species are also usually not helpful. The only way 
to include phylogeny in CART models seems to be to use 
the hierarchical taxonomic affi liations of the  individual 
species. Considering phylogenetic effects is important 
not only to treat a lack of statistical independence, but 
also to solve practical implications (e.g., when one pre-
dicts whether a species belonging to a particular family, 
order, or class would be more predisposed to invasion 
than other species belonging to other taxa at the same 
hierarchical level).

The tree-growing method is data intensive, requir-
ing many more cases than classical regression. While 
for multiple regression it is usually recommended to 
keep the number of explanatory variables six to ten 
times smaller than the number of observations, for 
classifi cation trees, at least 200 cases are recommended 
for binary response variables and about 100 more cases 
for each additional level of a categorical variable. Effi -
ciency of trees decreases rapidly with decreasing sample 
size, and for small data sets, no test samples may be 
available.
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