Achiral SFC: No C18 Equivalent, No Problem

J Preston, Morgan Kramer, and Marc Jacob

SFC Column Chemistries Used in This Stud

$\mathrm{Luna}_{\mathrm{LH}_{2}{ }^{2}}$	Luna	Silicaa (2)
1	5	5
	$\underset{\substack{\text { Kinetex } \\ \text { Biphenyl }}}{\text { a }}$	Kinete $\times 5$
	-	0

Example 1: Pharmaceutically Related Compounds

cally a weaker solvent and is less com monly used. However, there can be significant selectivity differences between these solvents that allow resolution ofcritical pairs. SFC is similar to HPLC with respect to peak shape issues	The work presented here evaluated 6

 Some eompounds wiul have foronting or or pric
tailing peak shapes and these can of acid

Basic 3-Step Screen

Step 1. Screen Co-Solvents
Use an appropiaite sample that has a represestative chromatographic profile Evaluate adatives, this work used methanol to evaluate acicic, basic, acild base mixed,
and Use a tast gradient, an example would be 5% to 25% over 2 min with a 30 second hold Iterpret essults by comparing peak shape, retention and how many peaks were obsenved Seleet the most promising conditions and move on to Step 2
Step 2. Column Screening
Use the best co-solvent additive combination found in 5 tee

 If nothing is promising, select other column chemistries and repeal Step 3. Method Optimization
 Offite peas are ver cosse, ele
Detemine if a a aradient is needed

Gonclusion

 Cations even without a "universal" sFC very effective for Achiral SFC separa-
achiral column. The ability to quick- tions and should be part of a com-
 combinations alows for methodology
to be quickly and easily developed.

Acknowledgements

```
-The authors would lik to thank (about cann
JASCO for providing the SFC
```


